Обозначим BC за x. По теореме синусов sin<a/BC=sin<b/AB=sin<c/AC. sin<c=sin<90=1, из чего следует, что AB/sin<90=25/1 равно sin<a/BC=0,6/x. Найдем x по пропорции: x=25*0,6=15.
По теореме Пифагора найдем сторону AC: AC^2=AB^2-BC^2=25^2-15^2=625-225=400; AC=20.
Площадь прямоугольного треугольника находится по формуле AC*BC/2. S=15*20/2=300/2=150.
Площадь любого треугольника можно найти по формуле A*H/2, где A-сторона, а H-опущенная на нее высота. В нашем случае S=AB*CH/2. Выразим CH: CH=S*2/AB; CH=150*2/25=300/25=12.
1)касательные, проведенные из одной точки к окружности, равны; обозначаем неизвестную часть за х и по т. Пифагора получаем: 225+9+6х+x^2=144+24x+x^2 234+6144+24x -18x=-90 x=5 периметр тр-ка = 15+8+17=40 2)касательные, проведенные из одной точки к окружности, равны получаем, что боковые стороны трапеции=15 проводим высоту и получаем прямоугольный тр-к с гипотенузой 15 и катетом 9 (24-6=18/2=9) по т. Пифагора находим другой катет(высоту): 225-81=144 √144=12 S=(6+24)/2*12=180 Радиус вписанной окружности в трапецию равен половине высоты трапеции. r=6
CH=12
Объяснение:
Обозначим BC за x. По теореме синусов sin<a/BC=sin<b/AB=sin<c/AC. sin<c=sin<90=1, из чего следует, что AB/sin<90=25/1 равно sin<a/BC=0,6/x. Найдем x по пропорции: x=25*0,6=15.
По теореме Пифагора найдем сторону AC: AC^2=AB^2-BC^2=25^2-15^2=625-225=400; AC=20.
Площадь прямоугольного треугольника находится по формуле AC*BC/2. S=15*20/2=300/2=150.
Площадь любого треугольника можно найти по формуле A*H/2, где A-сторона, а H-опущенная на нее высота. В нашем случае S=AB*CH/2. Выразим CH: CH=S*2/AB; CH=150*2/25=300/25=12.
ответ: 12
225+9+6х+x^2=144+24x+x^2
234+6144+24x
-18x=-90
x=5
периметр тр-ка = 15+8+17=40
2)касательные, проведенные из одной точки к окружности, равны
получаем, что боковые стороны трапеции=15
проводим высоту и получаем прямоугольный тр-к с гипотенузой 15 и катетом 9 (24-6=18/2=9)
по т. Пифагора находим другой катет(высоту): 225-81=144 √144=12
S=(6+24)/2*12=180
Радиус вписанной окружности в трапецию равен половине высоты трапеции.
r=6