До ть 1. Через точки A і B, що лежать на колах верхньої та нижньої основ циліндра і не належать одній твірній, проведено площину паралельно осі циліндра. Відстань від центра нижньої основи до цієї площини дорівнює 2 см, а площа утвореного перерізу – 60√2 см2. Визначте довжину відрізка AB (у см), площа розгортки бічної поверхні циліндра дорівнює 20√30 π см2.
Если острый угол ромба 60 градусов ,то он своей малой диагональю разбивается на два равносторонних треугольника.Тогда его малая диагональ = 4 см.Диагонали ромба перпендикулярны и делятся в точке пересечения пополам.Рассмотрим прямоугольный треугольник АОВ, уголАОВ=90,АВ=4, ОВ=2 (как половина от малой диагонали ВД).По теореме Пифагора АО=square 12 (кв.корень из 12)=2*square3. Высота ОК этого треугольника, опущенная из точки О равна (АО*ОВ)/АВ (по свойству такой высоты),значит ОК=2*2*square3/4=square3. Так как стороны ромба равноудалены от точки М, то эта точка проектируется в центр окружности, вписанной в ромб.Радиусом этой окружности будет как раз высота ОК. Из прямоугольного треугольника МОК найдем ОМ.Длина перпендикуляра ОМ и есть расстояние от точки М до плоскости ромба. По теореме Пифагора ОМ=square(MK^2-OK^2)=square(25-3)=square22.
Объяснение:
Дано:
Прямоугольный треугольник АВС
угол С = 90 градусов,
АВ — гипотенуза,
АВ = 8,
угол А = 45 градусов.
Найти площадь треугольника АВС, то есть S АВС — ?
1. Рассмотрим прямоугольный треугольник АВС. Сумма градусных мер углов треугольника равна 180 градусов. Тогда угол В = 180 - угол А - угол С;
угол В = 180 - 45 - 90;
угол В = 45 градусов.
Следовательно прямоугольный треугольник АВС является еще и равнобедренным, тогда АС = ВС.
2. По теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2 ( пусть АВ = ВС = х сантиметров);
х^2 + х^2 = 8^2 ;
2 * х^2 = 64;
х^2 = 64 : 2;
х^2 = 32.
3. S АВС = 1/2 * АС * ВС;
S АВС = 1/2 * 32;
S АВС = 16.
ответ: 16.