Правильный тетраэдр - треугольная пирамида, все грани которой правильные треугольники.
Обозначим пирамиду МАВС, центры eё граней E,P,T.
Основание О высоты МО пирамиды - центр описанной (и вписанной) окружности равностороннего ∆ АВС.
а) Выразить m через h.
АО - радиус описанной окружности.
Формула R=m/√3
MO²=АМ²-АО²
h²=m²-m²/3
2m²=3h
m=h√(3/2)=(h√6)/2
б) Выразить n через m.
Центр правильного треугольника - точка пересечения его медиан. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. В таком же отношении делятся ребра пирамиды.
МТ:ТН=2:1, Mc:MC=2:3; ⇒ cb:CB=2:3
Центры граней лежат в плоскости, параллельной основанию АВС и образующей в сечении треугольник abc~АВС с коэффициентом подобия k=2/3. ab=bc=ac-=2/3m
Расстояния между центрами граней - стороны треугольника, образованного при соединении центров граней, ∆ abc~ ∆ РТЕ с k=1/2.
Правильный тетраэдр - треугольная пирамида, все грани которой правильные треугольники.
Обозначим пирамиду МАВС, центры eё граней E,P,T.
Основание О высоты МО пирамиды - центр описанной (и вписанной) окружности равностороннего ∆ АВС.
а) Выразить m через h.
АО - радиус описанной окружности.
Формула R=m/√3
MO²=АМ²-АО²
h²=m²-m²/3
2m²=3h
m=h√(3/2)=(h√6)/2
б) Выразить n через m.
Центр правильного треугольника - точка пересечения его медиан. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. В таком же отношении делятся ребра пирамиды.
МТ:ТН=2:1, Mc:MC=2:3; ⇒ cb:CB=2:3
Центры граней лежат в плоскости, параллельной основанию АВС и образующей в сечении треугольник abc~АВС с коэффициентом подобия k=2/3. ab=bc=ac-=2/3m
Расстояния между центрами граней - стороны треугольника, образованного при соединении центров граней, ∆ abc~ ∆ РТЕ с k=1/2.
n=ab/2=1/2•(2/3)m
n=m/3.
по условию эти треугольники подобны...
Р(АВС) : Р(А1В1С1) = 4:5 (это и есть коэффициент подобия)
известно:
периметры подобных фигур относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия
(объемы относятся как куб коэфф.подобия)
S(АВС) : S(А1В1С1) = 16:25
или 25*S(АВС) = 16*S(А1В1С1)
S(А1В1С1) = (25/16)* S(АВС) АВС--меньший треугольник
S(А1В1С1) - S(АВС) = 27 (см²) (по условию)
(25/16)*S(АВС) - S(АВС) = 27 (см²)
S(АВС)*((25/16) - 1) = 27 (см²)
S(АВС)*(9/16) = 27
S(АВС) = 27*16/9 = 3*16 = 48 (см²)