Так как треугольник АВС - равнобедренный, то СН не только высота но и медиана значит АН=НВ=АВ/2=12/2=6. Рассмотрим прямоугольный треугольник АНВ: т.к. косинус это отношение прилежащего катета к гипотенузе то можно записать: (2√5)÷5=АН÷АС из этого выражаем АС: АС=АН÷((2√5)÷5)
подставляем АН и считаем значение выражения: АС=6÷((2√5)÷5))=15÷√5. теперь в прямоугольном треугольнике АНС по теореме Пифагора рассчитаем СН: СН²=(15÷√5)² - 6²=225÷5 - 36=45-36=9 √9=3 ответ: СН=3
1) L = 6√2 (см) ≈ 8,5 см; 2) А = 2√37 (см) ≈ 12,2 см
Объяснение:
1.
H = 8 см - высота пирамиды
а = 6 см - сторона основания
L - ? - длина бокового ребра пирамиды
-----------------------------------------------------------
Смотри прикреплённый рисунок
h = 0.5 a √3 = 0.5 · 6 · √3 = 3√3 (см) - высота треугольного основания
L пр = 2h/3 = 2 · 3√3 / 3 = 2√3 (см) - проекция ребра на основание пирамиды
Ребро L, высота пирамиды Н и проекция пирамиды на основание Lпр образуют прямоугольный треугольник с гипотенузой L.
По теореме Пифагора
L² = H² + L²пр = 8² + (2√3)² = 64 + 12 = 72
L = √72 = 6√2 (см) ≈ 8,5 см
2.
Н = 12 см - высота пирамиды
d = 4√2 см - диагональ квадратного основания пирамиды
А - ? - апофема пирамиды
-----------------------------------------------------------
Смотри прикреплённый рисунок
0,5а = 0,5d · cos 45° = 0.5 · 4√2 : √2 = 2 (см) - половина стороны квадратного основания пирамиды
Апофема А, высота Н пирамиды и половина стороны основания 0,5а образуют прямоугольный треугольник с гипотенузой А.
По теореме Пифагора
А² = Н² + (0,5а)² = 12² + 2² = 144 + 4 = 148
А = √148 = 2√37 (см) ≈ 12,2 см
т.к. косинус это отношение прилежащего катета к гипотенузе то можно записать:
(2√5)÷5=АН÷АС
из этого выражаем АС: АС=АН÷((2√5)÷5)
подставляем АН и считаем значение выражения: АС=6÷((2√5)÷5))=15÷√5.
теперь в прямоугольном треугольнике АНС по теореме Пифагора рассчитаем СН:
СН²=(15÷√5)² - 6²=225÷5 - 36=45-36=9
√9=3
ответ: СН=3