В равнобедренном треугольнике MNK с основанием MK, равным 10 см , MN=NK=20 см. На стороне NK лежит точка A так, что AK : AN как 1 : 3. Найти AM. Сделаем рисунок. АК:КN=1:3 Пусть коэффициент этого отношения будет х. Так как NK=20=х+3х=4x, AK=20:4=5см Проведем АВ параллельно основанию МК и АС параллельно боковой стороне NM. Треугольники MNK и ABN подобны с коэффициентом подобия KN:AN=4:3 Cледовательно, МК:АВ=4:3 10:АВ=4:3 4АВ=30 АВ=7,5 см В параллелограмме АВМС противоположные стороны равны. ВМ=АК=АС=5 см МС=7,5 см Треугольник АСК - равнобедренный. Найдем по т. Пифагора его высоту АН. КС=МК-МС=10-7,5=2,5 см НК=1,25 см АН²= (АК²-НК²)=(5²-1,25²)=23,4375 Из прямоугольного треугольника НАМ найдем АМ по т.Пифагора: АМ=√(МН²+АН²)=√(7,5²+23,4375)=√100=10 см
Решение: (можно решить и без рисунка, что я и сделаю-думаю будет понятно) У равнобедренного треугольника боковые стороны равны- это свойство нужно при решении. Обозначим основание треугольника за (х)см, тогда боковые стороны треугольника равны по: (х-3)см -каждая из боковых сторон Отсюда периметр треугольника равен: х+2*(х-3)=15,6 х+2х-6=15,6 3х=15,6+6 3х=21,6 х=21,6:3 х=7,2 (см) - длина основания треугольника Его боковые стороны равны по: (х-3)см или: 7,2-3=4,2(см) -каждая из боковых сторон Проверка: 7,2+4,2+4,2=15,6 15,6=15,6 - что и следует из условия задачи
ответ: Стороны треугольника равны: 7,2см; 4,2см; 4,2см
MN=NK=20 см. На стороне NK лежит точка A так, что AK : AN как 1 : 3. Найти AM.
Сделаем рисунок.
АК:КN=1:3
Пусть коэффициент этого отношения будет х.
Так как NK=20=х+3х=4x,
AK=20:4=5см
Проведем АВ параллельно основанию МК и АС параллельно боковой стороне NM.
Треугольники MNK и ABN подобны с коэффициентом подобия KN:AN=4:3
Cледовательно, МК:АВ=4:3
10:АВ=4:3
4АВ=30
АВ=7,5 см
В параллелограмме АВМС противоположные стороны равны.
ВМ=АК=АС=5 см
МС=7,5 см
Треугольник АСК - равнобедренный.
Найдем по т. Пифагора его высоту АН.
КС=МК-МС=10-7,5=2,5 см
НК=1,25 см
АН²= (АК²-НК²)=(5²-1,25²)=23,4375
Из прямоугольного треугольника НАМ найдем АМ по т.Пифагора:
АМ=√(МН²+АН²)=√(7,5²+23,4375)=√100=10 см
(можно решить и без рисунка, что я и сделаю-думаю будет понятно)
У равнобедренного треугольника боковые стороны равны- это свойство нужно при решении.
Обозначим основание треугольника за (х)см, тогда боковые стороны треугольника равны по:
(х-3)см -каждая из боковых сторон
Отсюда периметр треугольника равен:
х+2*(х-3)=15,6
х+2х-6=15,6
3х=15,6+6
3х=21,6
х=21,6:3
х=7,2 (см) - длина основания треугольника
Его боковые стороны равны по:
(х-3)см или: 7,2-3=4,2(см) -каждая из боковых сторон
Проверка:
7,2+4,2+4,2=15,6
15,6=15,6 - что и следует из условия задачи
ответ: Стороны треугольника равны: 7,2см; 4,2см; 4,2см