Трапеция АВСД: ВС=10, АД=90, диагонали АС=35 и ВД=75. Из точки С проведем прямую СК, параллельную диагонали ВД, до пересечения с продолжением стороны АД (К - точка пересечения СК и АД). Четырехугольник ВСКД - параллелограмм, т.к. ВС||ДК, ВД||СК ВС=ДК=10, ВД=СК=75 АК=АД+ДК=90+10=100 Найдем площадь треугольника АСК по ф.Герона: полупериметр р=(АС+СК+АК)/2=(35+75+100)/2=210/2=105 Sаск=√р(р-АС)(р-СК)(р-АК)=√105*70*30*5=1050 Если опустить высоту СН на основание АД, то она является и высотой ΔАСК, и высотой трапеции АВСД Площадь треугольника можно записать Sаск=АК*СН/2=(АД+ВС)*СН/2= Sавсд ответ:1050
Дано:
АС=7 см;
АВ=25 см;
ВС=24 см.
СО – высота, проведенная к АВ.
Высота, пересекаясь со стороной, к которой проведена, образует прямой угол.
То есть угол ВОС=90° и угол АОС=90°.
Следовательно ∆ВОС – прямоугольный с прямым углом ВОС и ∆АОС – прямоугольный с прямым углом АОС.
Пусть АО=х, тогда ВО=АВ–АО=25–х.
По теореме Пифагора в прямоугольном треугольнике ВОС:
ВС²=ВО²+СО²
СО²=ВС²–ВО²
СО²=24²–(25–х)²
СО²=576–625+50х–х²)
СО²=–х²+50х–49 (Ур 2)
По теореме Пифагора в прямоугольном треугольнике АОС:
АС²=АО²+СО²
СО²=АС²–АО²
СО²=7²–х²
СО²=49–х² (Ур 2)
Тогда можем составить уравнение, объединив Ур 1 и Ур 2, получим:
–х²+50х–49=49–х²
50х=98
х=1,96
Тоесть АО=1,96 см.
Подставим значение АО и известное значение АС в уравнение СО²=АС²–АО², получим:
СО²=49–3,8416
СО²=45,1584
СО=6,72 см.
ответ: 6,72 см.
Из точки С проведем прямую СК, параллельную диагонали ВД, до пересечения с продолжением стороны АД (К - точка пересечения СК и АД).
Четырехугольник ВСКД - параллелограмм, т.к. ВС||ДК, ВД||СК
ВС=ДК=10, ВД=СК=75
АК=АД+ДК=90+10=100
Найдем площадь треугольника АСК по ф.Герона:
полупериметр р=(АС+СК+АК)/2=(35+75+100)/2=210/2=105
Sаск=√р(р-АС)(р-СК)(р-АК)=√105*70*30*5=1050
Если опустить высоту СН на основание АД, то она является и высотой ΔАСК, и высотой трапеции АВСД
Площадь треугольника можно записать Sаск=АК*СН/2=(АД+ВС)*СН/2= Sавсд
ответ:1050