до іть будь ласка !! Різниця між бічною стороною і основою рівнобедреного трикутника дорівнює 6 см. Бісектриса кута при основі ділить медіану навпіл проведену до основи на відрізки у відношенні 8:5 Обчислити периметр трикутника Рус: Разница между стороной и основанием равнобедренного треугольника составляет 6 см. Бисектриса угла у основания делит медиану пополам, проведённуб к основанию, на отрезки по отношению к 8:5 Вычислить периметр треугольника
Площадь граней DMA и DMC = площадь прямоугольного тр-ка:
Sdma = Sdmc = 0,5*4*4 = 8cм².
В прямоугольном треугольнике DMA гипотенуза МА по Пифагору равна = √(DM²+DA²) = √(16+16) = 4√2см.
МА=МС=4√2см. Отрезок МА перпендикулярен AD (так как плоскость DMA перпендикулярна плоскости основания ABCD)
Тогда площадь граней СMB и MВА = площадь прямоугольного тр-ка:
Scmb = Smba = 0,5*BC*MC =0,5*4*4√2 = 8√2cм².
Итак, площадь боковой поверхности пирамиды = Sdma + Sdmc + Scmb + Smba = 16+16√2 = 16(1+√2)см²
площадь полной поверхности пирамиды равна площади боковой поверхности.
плюс площадь основания: 16(1+√2)см² +16см² = 16(2+√2)см².
Отношение большей к меньшей равно 6/4, равно 1.5
При вращении треугольника вокруг одного из катетов мы получаем конус, в основе которого будет лежать круг, с радиусом, равным второму катету.
Найдем длину круга при вращении вокруг катета длинной в 2 см:
C=2πr = 2 × 3 × π = 6π см
Тогда, площадь боковой поверхности будет равна произведению длинны окружности на длину гипотенузы треугольника. (Находим по Т. П)
S бок пов = 6π × √13 (длина гипотенузы) = 6π√13 см²
Проделав тоже самое для конуса, полученного при вращении вокруг катета длиной 3 см мы найдем S бок пов2 (4π√13)
А теперь делим одно и на другое. Получается: 6π√13/4π√13 = 1.5