2). Xb=2*Xd - Xa => Xb=8-3=5. Yb=2*Yd - Ya => Yb= -4-0= -4. Точка B(5;-4).
Параллелограмм - четырехугольник, у которого две противоположные стороны равны и параллельны. В данном нам четырехугольнике сторона АВ=√((Xb-Xa)²+(Yb-Ya)²)=√((-7-2)²+(0-(-5))²)=√(81+25)=√106.
Итак, противоположные стороны АВ и CD равны. Условие параллельности векторов: координаты векторов должны быть пропрпциональны, то есть их отношение должно быть равно. В нашем случае вектора АВ и CD имеют координаты: АВ{-9;5}, a CD{9;-5}. Xab/Xcd=Yab/Ycd= -1, то есть АВ параллельна CD.
Таким образом, четырехугольник АBCD - параллелограмм, что и требовалось доказать.
Координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Следовательно,
1). Xd=(Xa+Xb)/2 => Xa=2*Xd - Xb => Xa= -2-8= -10.
Yd=(Ya+Yb)/2 => Ya=2*Yd - Yb => Ya= 14-5= 9. Точка А(-10;9)
2). Xb=2*Xd - Xa => Xb=8-3=5. Yb=2*Yd - Ya => Yb= -4-0= -4. Точка B(5;-4).
Параллелограмм - четырехугольник, у которого две противоположные стороны равны и параллельны. В данном нам четырехугольнике сторона АВ=√((Xb-Xa)²+(Yb-Ya)²)=√((-7-2)²+(0-(-5))²)=√(81+25)=√106.
CD=√((Xd-Xc)²+(Yd-Yc)²)=√((3-(-6))²+(-4-1)²)=√(81+25)=√106.
Итак, противоположные стороны АВ и CD равны. Условие параллельности векторов: координаты векторов должны быть пропрпциональны, то есть их отношение должно быть равно. В нашем случае вектора АВ и CD имеют координаты: АВ{-9;5}, a CD{9;-5}. Xab/Xcd=Yab/Ycd= -1, то есть АВ параллельна CD.
Таким образом, четырехугольник АBCD - параллелограмм, что и требовалось доказать.
Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -