Смотри, площадь треугольника равна S=r*P/2, где P-периметр , а r-радиус вписанной окружности. P=ab+(ac+bc)=72, тогда S=240, так же площадь равна корню из(p/2*(p-ab)(p-bc)(p-ac), это формула герона, так как ac + bc =46, а ab = 26, то подставим всё сюда и будет выглядеть так:
240^2=36*(36-26)(36-46+bc)(36-bc) "ac = 46-bc" по условию. после решаем это, раскрыв всё, будет выглядеть так:
bc^2 - 46bc + 520 = 0, где дискриминант равен 36, получим bc = 26 или 20, просто второе значение это ac, ведь 26 + 20 = 46, а это ac+bc, ответ: 20 и 26
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон: для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный ответ: 1) 2) треугольник тупоугольный
240^2=36*(36-26)(36-46+bc)(36-bc) "ac = 46-bc" по условию. после решаем это, раскрыв всё, будет выглядеть так:
bc^2 - 46bc + 520 = 0, где дискриминант равен 36, получим bc = 26 или 20, просто второе значение это ac, ведь 26 + 20 = 46, а это ac+bc, ответ: 20 и 26
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон:
для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1)
2) треугольник тупоугольный