Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Если графически задан образец отрезка (если задана сторона-см.условие), то берем радиус окружности, равный отрезку, ставим иглу циркуля в т.А и делаем отметку на прямой р заданной длины. Это т.В.
Построим угол А будущего треугольника АВС прямым.
Для этого из т.А в обе стороны на прямой р делаем отметины циркулем произвольного радиуса, отмечаем точки А1 и А2. А1 и А2 равноудалены от т.А.
Теперь чертим окружность с центром в т.А1, радиусом чуть бОльшим, чем АА1. Не изменяя радиус, чертим окружность с центром в т.А2.
Эти окружности пересекутся в 2 точках, через них нужно провести прямую с.
По построению с⊥р.
Далее построим угол 60°в т.В.
Для этого чертим произвольную окружность с центром в т.В.
Выберем точку (одну из двух) пересечения этой окружности с прямой р, расположенную ближе к т.А. Обозначим т.В1.
Не меняя радиуса, построим окружность с центром в т.В1
Через одну из точек пересечения этих окружностей и т.В проведем прямую а.
пересечение прямых а и с дадут т.С-искомую вершину треугольника АВС.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Объяснение:
Чертим прямую р.
На прямой р ставим произвольно т А.
Если графически задан образец отрезка (если задана сторона-см.условие), то берем радиус окружности, равный отрезку, ставим иглу циркуля в т.А и делаем отметку на прямой р заданной длины. Это т.В.
Построим угол А будущего треугольника АВС прямым.
Для этого из т.А в обе стороны на прямой р делаем отметины циркулем произвольного радиуса, отмечаем точки А1 и А2. А1 и А2 равноудалены от т.А.
Теперь чертим окружность с центром в т.А1, радиусом чуть бОльшим, чем АА1. Не изменяя радиус, чертим окружность с центром в т.А2.
Эти окружности пересекутся в 2 точках, через них нужно провести прямую с.
По построению с⊥р.
Далее построим угол 60°в т.В.
Для этого чертим произвольную окружность с центром в т.В.
Выберем точку (одну из двух) пересечения этой окружности с прямой р, расположенную ближе к т.А. Обозначим т.В1.
Не меняя радиуса, построим окружность с центром в т.В1
Через одну из точек пересечения этих окружностей и т.В проведем прямую а.
пересечение прямых а и с дадут т.С-искомую вершину треугольника АВС.