Площадь трапеции равна произведению полусуммы оснований на высоту.
а) Если в равнобедренной трапеции диагонали перпендикулярны, то её высота равна средней линии.
Средняя линия трапеции, как известно, равна полусумме оснований.
(a+b):2=H=14
S=14²=196 (ед. площади)
б) Диагонали равнобедренной трапеции равны.
Проведем из С параллельно BD прямую до пересечения с продолжением АD в точке К.
Противолежащие стороны четырехугольника ВСКD параллельны, ⇒
DК=BC.
АK=AD+BC
Угол АСК=углу АОD=90°
В ∆ АСК AC=CK, ⇒∆ АСК прямоугольный равнобедренный,
АН=НК=СН=14
Площадь АСК=СН•AК:2=14•14=196
Площадь трапеции СН•(АD+BC):2=СН•АК:2=196
------
Такой нахождения площади трапеции можно применять, когда известны длины оснований и диагоналей. Площадь трапеции равна площади треугольника АСК которую можно вычислить по ф. Герона.
В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой . Дано: DABC - равнобедренный; AB - основание. CD - медиана .
Док-ть: CD - высота и биссектриса .
Доказательство:
CA=CD - по условию РA= РB - по свойству равнобедренного треугольника AD=DB т. к. CD - медиана , ЮDCAD=DCBD (по 1-ому признаку равенства треугольников) ЮРACD= РBCD, РADC= РBDC РACD=РBCD Ю CD - биссектриса РACD и РBCD - смежные и равны Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
Площадь трапеции равна произведению полусуммы оснований на высоту.
а) Если в равнобедренной трапеции диагонали перпендикулярны, то её высота равна средней линии.
Средняя линия трапеции, как известно, равна полусумме оснований.
(a+b):2=H=14
S=14²=196 (ед. площади)
б) Диагонали равнобедренной трапеции равны.
Проведем из С параллельно BD прямую до пересечения с продолжением АD в точке К.
Противолежащие стороны четырехугольника ВСКD параллельны, ⇒
DК=BC.
АK=AD+BC
Угол АСК=углу АОD=90°
В ∆ АСК AC=CK, ⇒∆ АСК прямоугольный равнобедренный,
АН=НК=СН=14
Площадь АСК=СН•AК:2=14•14=196
Площадь трапеции СН•(АD+BC):2=СН•АК:2=196
------
Такой нахождения площади трапеции можно применять, когда известны длины оснований и диагоналей. Площадь трапеции равна площади треугольника АСК которую можно вычислить по ф. Герона.
Дано:
DABC - равнобедренный;
AB - основание. CD - медиана .
Док-ть:
CD - высота и биссектриса .
Доказательство:
CA=CD - по условию
РA= РB - по свойству равнобедренного треугольника
AD=DB т. к. CD - медиана ,
ЮDCAD=DCBD (по 1-ому признаку равенства треугольников)
ЮРACD= РBCD, РADC= РBDC
РACD=РBCD Ю CD - биссектриса
РACD и РBCD - смежные и равны
Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm