Хорошо, пойдем очень сложным путем, используем формулу Sромба=a^2*sinA Имеем основание и 2 стороны треугольника, по теореме косинусов вычислим угол, 144=100+100-200cosA; cosA=-56/200=-0.28("-"значит что угол тупой) Используя основное тригонометрическое тождество высчитаем синус угла sinA=√(1-(-0.28^2))=0.96. Подставим найденные значения в формулу. S=100*0.96=96 Площадь ромба 96 см ответ: 96
У параллелограмма есть свойство, сумма квадратов диагоналей, равна сумме квадратов всех его сторон, т.к ромб частный случай параллелограмма, используем это свойство. Значит d1^2+d2^2=(2a^2),где a - сторона ромба Подставив значения в формулу получим 144+d2^2=400 d^2=256 d=16 Дальше используем формулу площади четырехугольника через диагонали S=(d1*d2)/2 диагонали в ромбе пересекаются под прямым углом, потому синус не учитываем S=(16*12)/2=96 ответ: 96
Теорема. Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне.
Доказательство.
Проведем высоты ВН и СЕ. Докажем, что S(ABCD) = AD · BH.
ΔАВН = Δ DCE - они прямоугольные и равны по гипотенузе (АВ = СD как противоположные стороны параллелограмма) и катету (ВН = СЕ как перпендикуляры, проведенные от одной из параллельных прямых к другой). Значит, равны и их площади (есть аксиома площади: равные фигуры имеют равные площади), т.е. S(ABH) = S(DCE).
Заметим, что S(ABCD) =S(ABCЕ) - S(DСЕ),
а также S(НBCЕ) = S(ABCЕ) - S(ABН).
Откуда следует, что S(ABCD) = S(НBCЕ) , т.к. выше доказано, что S(ABH) = S(DCE). Но НВСЕ - прямоугольник, а площадь прямоугольника равна произведению двух его сторон (доказывается ранее при изучениии темы "Площпди многоугольников"), т.е. S(НBCЕ) =AD · BH.
Имеем основание и 2 стороны треугольника, по теореме косинусов вычислим угол, 144=100+100-200cosA; cosA=-56/200=-0.28("-"значит что угол тупой)
Используя основное тригонометрическое тождество высчитаем синус угла sinA=√(1-(-0.28^2))=0.96. Подставим найденные значения в формулу.
S=100*0.96=96
Площадь ромба 96 см
ответ: 96
У параллелограмма есть свойство, сумма квадратов диагоналей, равна сумме квадратов всех его сторон, т.к ромб частный случай параллелограмма, используем это свойство.
Значит
d1^2+d2^2=(2a^2),где a - сторона ромба
Подставив значения в формулу получим
144+d2^2=400
d^2=256
d=16
Дальше используем формулу площади четырехугольника через диагонали
S=(d1*d2)/2 диагонали в ромбе пересекаются под прямым углом, потому синус не учитываем
S=(16*12)/2=96
ответ: 96
Теорема. Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне.
Доказательство.
Проведем высоты ВН и СЕ. Докажем, что S(ABCD) = AD · BH.
ΔАВН = Δ DCE - они прямоугольные и равны по гипотенузе (АВ = СD как противоположные стороны параллелограмма) и катету (ВН = СЕ как перпендикуляры, проведенные от одной из параллельных прямых к другой). Значит, равны и их площади (есть аксиома площади: равные фигуры имеют равные площади), т.е. S(ABH) = S(DCE).
Заметим, что S(ABCD) =S(ABCЕ) - S(DСЕ),
а также S(НBCЕ) = S(ABCЕ) - S(ABН).
Откуда следует, что S(ABCD) = S(НBCЕ) , т.к. выше доказано, что S(ABH) = S(DCE). Но НВСЕ - прямоугольник, а площадь прямоугольника равна произведению двух его сторон (доказывается ранее при изучениии темы "Площпди многоугольников"), т.е. S(НBCЕ) =AD · BH.
Следовательно, и S(ABCD) = AD · BH.
Теорема доказана.