До ть пліз) Внаслідок повороту трикутника ABC навколо точки A на 30° за годинниковою стрілкою точка B переходить у точку C. Визначте вид трикутника ABC. 1) рівнобедрений 2) рівносторонній 3) різносторонній 4) визначити неможливо.
Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
Середины сторон произвольного четырёхугольника являются вершинами параллелограмма (теорема Вариньона). Диагонали параллелограмма Вариньона равны, следовательно он является прямоугольником. Стороны параллелограмма Вариньона параллельны диагоналям данного четырехугольника, следовательно диагонали четырехугольника перпендикулярны.
S= 10*7*sin90 /2 = 35
----------------------------------------------------------------------------------------------------------------- E,F,G,H - середины сторон произвольного четырехугольника. EFGH - параллелограмма Вариньона.
EF является средней линией в треугольнике ABC, EF||AC GH является средней линией в треугольнике ADC, GH||AC EH является средней линией в треугольнике BAD, EH||BD FG является средней линией в треугольнике BCD, FG||BD
известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы.
в основании египетский треугольник, т.е. гипотенуза =10
высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10)
h² = 13² - 5² = (13-5)(13+5) = 8*18
h = 4*3 = 12
S= 10*7*sin90 /2 = 35
-----------------------------------------------------------------------------------------------------------------
E,F,G,H - середины сторон произвольного четырехугольника. EFGH - параллелограмма Вариньона.
EF является средней линией в треугольнике ABC, EF||AC
GH является средней линией в треугольнике ADC, GH||AC
EH является средней линией в треугольнике BAD, EH||BD
FG является средней линией в треугольнике BCD, FG||BD