равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
Сначала находим перпендикуляр проведенный к одной из сторон основы:
допустим SК перпендикулярно АД тогда SК = корень из(169-25)=12
площадь одного трёх угольника образующего пирамиду= полупроизведение основы на высоту:
(10*12)/2=60 см(квадратных)
площадь полной поверхности=4*60+100=360(4 площади трёх угольника +площадь основы)
высота пирамиды:
опускаем перпендикуляр с точки вершины(это и есть высота)в точку О, проводим диагональ через точку О, половина диагонали(ОД) =5 корней из 2, (свойство квадрата)тогда имея грань трехугольника SД находим высоту:
Сначала находим перпендикуляр проведенный к одной из сторон основы:
допустим SК перпендикулярно АД тогда SК = корень из(169-25)=12
площадь одного трёх угольника образующего пирамиду= полупроизведение основы на высоту:
(10*12)/2=60 см(квадратных)
площадь полной поверхности=4*60+100=360(4 площади трёх угольника +площадь основы)
высота пирамиды:
опускаем перпендикуляр с точки вершины(это и есть высота)в точку О, проводим диагональ через точку О, половина диагонали(ОД) =5 корней из 2, (свойство квадрата)тогда имея грань трехугольника SД находим высоту:
корень из (169-50)=корень из 119