Можно решать так: имеется трапеция, большее основание которой 25 см, меньшее основание 4 см, боковые стороны 13 см и 20 см. (верхний чертеж)
Проведем две высоты, которые отсекут от нижнего основания 4 см.
Начертим треугольник (чертеж внизу), где основание 25-4=21 см, стороны 13 см и 20 см и высота h. Найдем его площадь по формуле Герона
S=√(р(р-а)(р-в)(р-с)=√(27*6*14*7)=√15786=126 (см²)
Найдем h, которая и будет высотой данной трапеции
126=1\2 * 21 * h
10,5h=126; h=12 см.
ответ: 12 см.
Можно решать другим , но будет длиннее.
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение:
Можно решать так: имеется трапеция, большее основание которой 25 см, меньшее основание 4 см, боковые стороны 13 см и 20 см. (верхний чертеж)
Проведем две высоты, которые отсекут от нижнего основания 4 см.
Начертим треугольник (чертеж внизу), где основание 25-4=21 см, стороны 13 см и 20 см и высота h. Найдем его площадь по формуле Герона
S=√(р(р-а)(р-в)(р-с)=√(27*6*14*7)=√15786=126 (см²)
Найдем h, которая и будет высотой данной трапеции
126=1\2 * 21 * h
10,5h=126; h=12 см.
ответ: 12 см.
Можно решать другим , но будет длиннее.
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение: