Вы, возможно, ошиблись в условии, и нужно найти площадь треугольника АВС, а не АВD?
Иначе для чего дана длина стороны ВС и отрезка DС? Сделаем рисунок к задаче.
Рассмотрим ⊿ ВDС.
Катет ВD=12 см, гипотенуза ВС=13 см. С отрезком DС основания они составляют "египетский" треугольник, поэтому этот отрезок равен 5 см. Треугольник АВD - также прямоугольный, а так как угол А=45°, он и равнобедренный.
Отрезок АD основания равен высоте ВD=12 см Основание АС треугольника АВС равно АС=АD+DС=12+5=17 см S ᐃ АВС=ВD·АС⠰2=102 см²
Объяснение:
1. Сумма углов правильного n-угольника равна 180 • n - 360 или 180 • (n-2). А теперь считаем:
180 • 14 - 360 = 2160 или 180 • (14 - 2) = 2160
2.Площадь параллелограмма равна: сторона * высоту, проведенную к ней. Следовательно: 84 \ 12 = 7 (см)
3.Обозначим треугольник как АВС где АС основание, ВК - высота. зная что АВ = 15, а ВК = 9 найдём АК по теореме пифагора:
АК в квадрате = АВ в квадрате-ВКв квадрате , АК в квадрате = 225 - 81
АК=корень из 144 , АК = 12.
так как треуг равнобедренный то АВ = СВ = 15 . Найдём КС по теореме пифагора:
КС в квадрате = ВС в кв-ВК в кв , КС в кв = 225-81=144 в корне
КС = 12, значит АС = АК+КС
АС=24 , найдём площадь по формуле
ответ:108 см кв
4.Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Пусть ВО = х, тогда BD = 2x, AC = 2x +28, AO = x + 14
ΔABO: ∠O = 90°
По теореме Пифагора:
AB² = AO² + OB²
26² = (x + 14)² + x²
x² + 28x + 196 + x² - 676 = 0
2x² + 28x - 480 = 0
x² + 14x - 240 = 0
D/4 = 7² + 240 = 49 + 240 = 289 = 17²
x = -7 + 17 = 10 или x = -7 -17 = -24 не подходит по смыслу задачи
BD = 20 см
AC = 20 + 28 = 48 см
Sabcd = 1/2 ·BD · AC = 1/2 · 20 · 48 = 480 (см²)
5.фото
а 2 вариант на подобия этого подставить под формулы
Вы, возможно, ошиблись в условии, и нужно найти площадь треугольника АВС, а не АВD?
Иначе для чего дана длина стороны ВС и отрезка DС? Сделаем рисунок к задаче.
Рассмотрим ⊿ ВDС.
Катет ВD=12 см, гипотенуза ВС=13 см.
С отрезком DС основания они составляют "египетский" треугольник, поэтому этот отрезок равен 5 см.
Треугольник АВD - также прямоугольный, а так как угол А=45°, он и равнобедренный.
Отрезок АD основания равен высоте ВD=12 см
Основание АС треугольника АВС равно
АС=АD+DС=12+5=17 см
S ᐃ АВС=ВD·АС⠰2=102 см²