)длина вектора |ab| = √(12+32) = √10 б) разложение по векторам: ab = i+3j 2) а) уравнение окружности: (x-xa)2 + (y-ya)2 = |ab|2 (x+1)2 + y2 = 10 б) точка d принадлежит окружности, если |ad| = |ab| |ad| = √(())2 + (2-0)2) = √40 √40 ≠ √10 - точка d не принадлежит окружности 3) уравнение прямой имеет вид y = kx+b k = yab/xab = 3/1 = 3 0 = 3·(-1) + b b = 3 уравнение прямой: y = 3x+3 4) а) координаты вектора cd: cd = (5-6; 2-1) = (-1; 1) xab/xcd = 1/-1 = -1, yab/ycd = 3/1 = 3 -1 ≠ 3 - следовательно, векторы ab и cd не коллинеарные, и четырёхугольник abcd не прямоугольник.подозреваю, что координаты точки d должны быть (5; -2) тогда точка d также не принадлежит окружности , но:а) координаты вектора cd: cd = (5-6; -2-1) = (-1; -3) xab/xcd = 1/-1 = -1, yab/ycd = 3/-3 = -1 -1 = -1 - векторы ab и cd коллинеарны б) координаты вектора ad: ad = (); -2-0) = (6; -2) координаты вектора bc: bc = (6-0; 1-3) = (6; -2) xbc/xad = 6/6 = 1, ybc/yad = -2/-2 = 1 1 = 1 - векторы bc и ad коллинеарны. векторы лежат на попарно параллельных прямых, значит, четырёхугольник abcd - параллелограмм. cos (ab^bc) = (1·6+3·(-2))/(√(12+32)·√(62+(-2)2)) = 0 ab^bc = 90° если в параллелограмме один угол прямой, то остальные углы тоже прямые, и этот параллелограмм - прямоугольник.
Объяснение:
у=4х-7
Точка А имеет координаты (8,2;25,8), где абсцисса х=8,2.
ордината у=25,8.
Подставим значение х и у в график, и проверим уравнивается правая и левая часть.
25,8=4*8,2-7
25,8=32,8-7
25,8=25,8
Точка А(8,2;25,8) принадлежит графику у=4х-7
2)
т.В(-71;-290)
х=-71
у=-290
у=4х-7, подставляем значение х и у.
-290=4(-71)-7
-290=-284-7
-290≠291
Правая и левая часть не уравнялись, значит т.В(-71;-290) не принадлежит этому графику.
3) т.С(35;-133)
х=35
у=-133
у=4х-7, подставляем значение х и у.
-133=4*35-7
-133=140-7
-133≠133
т.С не принадлежит графику у=4х-7.
4) т.D(-46;-191)
x=-46
у=-191
у=4х-7
-191=4(-46)-7
-191=-184-7
-191=-191
т.D(-46;-191) принадлежит этому графику.
Бог в