Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности. Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12 Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед² Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2 Площадь трапеции: Sт=h(a+b)/2=6√2 Общая площадь: Sобщ=Sт+Sбок=30+6√2 ответ: a. 30+6
Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12
Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед²
Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2
Площадь трапеции: Sт=h(a+b)/2=6√2
Общая площадь: Sобщ=Sт+Sбок=30+6√2
ответ: a. 30+6
600√3.
Объяснение:
Пусть в данном треугольнике АВС ∠А = α, АD - биссектриса, АD = 24, AB = 60, AC = 40.
1) SABD = 1/2•AB•AD•sin(α/2) = 1/2•60•24•sin(α/2) = 720•sin(α/2).
SACD = 1/2•AC•AD•sin(α/2) = 1/2•40•24•sin(α/2) = 480•sin(α/2).
тогда SABC = SABD + SACD = 1200•sin(α/2).
2) С другой стороны,
SAВC = 1/2•AC•AВ•sinα = 1/2•40•60•sinα = 1200•sinα.
3) Составим равенство:
1200•sin(α/2) = 1200•sinα
sin(α/2) = sinα
sin(α/2) = 2•sin(α/2)•cos(α/2)
α - угол треугольника, тогда sin(α/2) ≠ 0,
1 = 2•cos(α/2)
cos(α/2) = 1/2, α/2 = 60°, α = 120°.
3) SAВC = 1200•sinα = 1200•sin120° = 1200°•sin(180° - 60°) = 1200•sin60° = 1200•√3/2 = 600√3.