Основание и боковая сторона равнобедренного треугольника равны 120 см и 68 см соответственно. Точка A находится на расстоянии 25 см от каждой прямой, содержащей сторону треугольника. Проекцией точки A на плоскость треугольника является точка, принадлежащая этому треугольнику. Найдите расстояние от точки A до плоскости треугольника.
20 см
Объяснение:
Опустим перпендикуляр АО к плоскости треугольника.
АО - искомое расстояние от точки А до плоскости треугольника.
АК, АР и АН - перпендикуляры к сторонам треугольника ВЕС.
По условию АК = АР = АН = 25 см.
ОК⊥ВЕ, ОР⊥ЕС, ОН⊥ВС по теореме о трех перпендикулярах.
ОК = ОР = ОН как проекции равных наклонных, проведенных из одной точки.
То есть, точка О равноудалена от сторон треугольника, значит О - центр окружности, вписанной в треугольник ВЕС, ОК, ОР, ОН - радиусы вписанной окружности.
ΔВЕС равнобедренный, центр вписанной окружности лежит на высоте, проведенной к основанию ( ЕН ), которая является медианой, ВН = 0,5 ВС = 60 см.
Из прямоугольного треугольника ВЕН по теореме Пифагора:
см
Площадь треугольника ВЕС:
см²
Найдем радиус вписанной в треугольник окружности по формуле:
Основание и боковая сторона равнобедренного треугольника равны 120 см и 68 см соответственно. Точка A находится на расстоянии 25 см от каждой прямой, содержащей сторону треугольника. Проекцией точки A на плоскость треугольника является точка, принадлежащая этому треугольнику. Найдите расстояние от точки A до плоскости треугольника.
20 см
Объяснение:
Опустим перпендикуляр АО к плоскости треугольника.
АО - искомое расстояние от точки А до плоскости треугольника.
АК, АР и АН - перпендикуляры к сторонам треугольника ВЕС.
По условию АК = АР = АН = 25 см.
ОК⊥ВЕ, ОР⊥ЕС, ОН⊥ВС по теореме о трех перпендикулярах.
ОК = ОР = ОН как проекции равных наклонных, проведенных из одной точки.
То есть, точка О равноудалена от сторон треугольника, значит О - центр окружности, вписанной в треугольник ВЕС, ОК, ОР, ОН - радиусы вписанной окружности.
ΔВЕС равнобедренный, центр вписанной окружности лежит на высоте, проведенной к основанию ( ЕН ), которая является медианой, ВН = 0,5 ВС = 60 см.
Из прямоугольного треугольника ВЕН по теореме Пифагора:
см
Площадь треугольника ВЕС:
см²
Найдем радиус вписанной в треугольник окружности по формуле:
где p - полупериметр.
см
см
ΔАОК: ∠АОК = 90°, ОК = r = 15 см, АК = 25 см,
по теореме Пифагора
AO² = AK² - OK² = 25² - 15² = 625 - 225 = 400
AO = √400 = 20 см
Треугольник АВС равносторонний, так как АВ = АС как отрезки касательных к окружности проведённых из одной точки. ∠ВАС = 60, значит ∠АВС = ∠АСВ = (180 - 60) : 2 = 60 Рассмотрим четырёхугольник АСОВ. Сумма углов четырёхугольника равна 360 . ∠АСО = ∠АВО = 90 как углы образованные радиусом окружности и касательной к окружности, Значит ∠ ВОС = 360 - 90 - 90 - 60 = 120. По теореме косинусов найдем ВС² = ВО² + ОС² - 2 * ВО * ВО* cos 120
ВС² = 400 + 400 + 2 * 400 * 0,5 = 800 + 400 = 1200
ВС = 20√3
Р = 20√3 * 3 =60√3мм²
(бро , если не сложно мне с решением моего)