До іть з геометрією Завдання №1
Побудувати переріз куба ABCDA 1 B 1 C 1 D 1 площиною, яка проходить
через вершини A, C і точку K, взяту на ребрі A 1 B 1 . Встановити види
перерізу.
Завдання №2
Точки P,Q, R –середини
ребер A 1 B 1 , B 1 C 1 та CD куба ABCDA 1 B 1 C 1 D 1 . Який многокутник буде
перерізом куба площиною PQR? Знайти площу цього многокутника,
якщо відомо, що ребро куба дорівнює а.
Завдання №3
Побудуйте переріз трикутної піраміди SABC площиною, яка
проходить через точки K, L і M, K ∈ SA, L ∈ SB, M ∈ SC.
1-ая задача:
в цилиндре проведена плоскость , параллельна оси и отсекающая от окружности основания дугу 90 градусов
значит в поперечном сечении образуется ПРЯМОУГОЛНИЫЙ равнобедренный треугольник
-угол при оси цилиндра 90 град
-углы при основнии 45 град
-боковые стороны - катеты, равные радису цилиндра a=b=R
-высота h=4 равна расстоянию до оси цилиндра
тогда радиус R=h/sin45=4 / (√2/2)=4√2
длина окружности основания L=2R*pi = 2*4√2*pi=8√2*pi
длина основния треугольника(гипотенуза) c=R√2=4√2*√2=8
Диагональ сечения равна d=10
высота цилиндра (H) по теореме Пифагора
H^2=d^2 - с^2 = 10^2 -8^2 =100-64=36 <--- H=6
площадь боковой поверхности цилиндра.Sбок = L*H=8√2*pi*6=48√2*pi
ОТВЕТ
48√2*pi
или
pi*48√2
или
48pi√2
сделаем построение по условию
объем пирамиды V=1/3*So*H
по условию
<SKO =60 грани наклонены к основанию под углом 60гр.
LO=2√3 - высота в треугольнике SKO
треугольник SKO -прямоугольный | SO | ┴ (ABC)
<KSO = 90 - <SKO =90 -60=30 град
треугольник SLO -прямоугольный | OL | ┴ | SK |
OK = LO/sin<SKO = 2√3 / sin60 = 4
высота Н=SO=LO / sin<KSO = 2√3 / sin30 = 2√3 / 1/2 =4√3
основание - равносторонний треугольник АВС
все стороны равны, все углы равны 60 град
точка О - центр треугольника , пересечение медиан АА1,ВВ1,СК
известно, что точка О делит медиану в отношении ОК : ОС = 1 : 2
тогда ОК = 1/3 *СК , значит CK = 3*OK = 3*4=12
стороны треугольника АВС АВ=ВС=АС=СК /sin60=12/sin60=8√3
тогда площадь основания
So=1/2*AB*CK=1/2*8√3*12= 48√3
объем пирамиды V=1/3 *48√3 *4√3 = 192
ответ: 192