94)
Угол - у. (буду так сокращать)
1. у1=у2 => а параллельно в (как соответственные углы)
2. у2=у4 (у4 - угол напротив угла 2) - как вертикальные углы
3. у2=у4=у2 => в параллельно с (как соответственные углы)
4. а параллельно в, в параллельно с => а параллельно с.
ЧТД
95)
1. Продлим ВС и В1С1.
уВСА=уВ1С1А1 (т. к треугольники равнобедренные) =>
При ВС и В1С1 и секущей АС1 - углы ВСА и В1С1А1 - соответственные углы, => ВС параллельно В1С1
96)
1. у. РЕВ = у. 1 как вертикальные
у. 1 = у. 2 (т. к треугольник равнобедренный)
2. у. ЕNF= 180° - у. 1 - у. 2 = 180° - у. МЕР - у. РЕВ = у. МЕА (а они в свою очередь соответственные) => АВ параллельно CD
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
94)
Угол - у. (буду так сокращать)
1. у1=у2 => а параллельно в (как соответственные углы)
2. у2=у4 (у4 - угол напротив угла 2) - как вертикальные углы
3. у2=у4=у2 => в параллельно с (как соответственные углы)
4. а параллельно в, в параллельно с => а параллельно с.
ЧТД
95)
1. Продлим ВС и В1С1.
уВСА=уВ1С1А1 (т. к треугольники равнобедренные) =>
При ВС и В1С1 и секущей АС1 - углы ВСА и В1С1А1 - соответственные углы, => ВС параллельно В1С1
ЧТД
96)
1. у. РЕВ = у. 1 как вертикальные
у. 1 = у. 2 (т. к треугольник равнобедренный)
2. у. ЕNF= 180° - у. 1 - у. 2 = 180° - у. МЕР - у. РЕВ = у. МЕА (а они в свою очередь соответственные) => АВ параллельно CD
ЧТД
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает