Условие: "Из точки А до плоскости альфа проведены наклонные АВ и АС, которые образуют со своими проекциями на данную плоскость углы по 30°. Найти данные наклонные и расстояние от точки А до плоскости альфа, если угол между ПРОЕКЦИЯМИ наклонных равен 90°, а расстояние между основаниями наклонных равно 6 см."
Решение.
Опустим перпендикуляр АН из точки А на плоскость альфа.
Треугольники АВН и АСН равны по катету и острому углу. Следовательно, наклонные АВ и АС равны, равны и их проекции. Треугольник ВНС - прямоугольный, так как угол между проекциями ВН и СН равен 90° (дано). Так как проекции равны, треугольник ВНС равнобедренный. Пусть катеты равны х, тогда по Пифагору:
2х² = 6² => х = √6см.
Итак, ВН = СН = √6 см.
В прямоугольном треугольнике АВН катет АН лежит против угла В, равного 30° (дано). Тогда АВ = 2·ВН и по Пифагору:
АВ = АС = 2√6 см, АН = 3√2 см.
Объяснение:
Условие: "Из точки А до плоскости альфа проведены наклонные АВ и АС, которые образуют со своими проекциями на данную плоскость углы по 30°. Найти данные наклонные и расстояние от точки А до плоскости альфа, если угол между ПРОЕКЦИЯМИ наклонных равен 90°, а расстояние между основаниями наклонных равно 6 см."
Решение.
Опустим перпендикуляр АН из точки А на плоскость альфа.
Треугольники АВН и АСН равны по катету и острому углу. Следовательно, наклонные АВ и АС равны, равны и их проекции. Треугольник ВНС - прямоугольный, так как угол между проекциями ВН и СН равен 90° (дано). Так как проекции равны, треугольник ВНС равнобедренный. Пусть катеты равны х, тогда по Пифагору:
2х² = 6² => х = √6см.
Итак, ВН = СН = √6 см.
В прямоугольном треугольнике АВН катет АН лежит против угла В, равного 30° (дано). Тогда АВ = 2·ВН и по Пифагору:
АН² = (2ВН)² - ВН² => АН = √(4·6 - 6) = 3√2 см.
ответ: АВ = АС = 2√6 см, АН = 3√2 см.
1 способ. можно воспользоваться правилом, что синус угла от 0° до 90° возрастает, синус угла от 90° до 180° убывает.
а) sin 150°; sin 135°; sin 90° ; sin 60°
в) использовать формулу , чтобы свести все углы в первую четверть.
sin (180° - α) = sin α
sin 60° = sin (180° - 60°) = sin 120°
sin 90° = sin (180° - 90°) = sin 90°
sin 135° = sin (180° - 135°) = sin 45°
sin 150° = sin (180° - 150°) = sin 30°
ответ: sin 150°; sin 135°; sin 90° ; sin 60°
по таблице косинусов углов
cos(0°)=cos(0)= 1
cos(60°)=cos(π/3)=1/2
cos(90°)=cos(π/2)= 0
cos(135°)=cos3 x π/4=,7071)
cos(150°)=cos5 x π/6=(-0,8660)
ответ cos(150°). cos(135°). cos(90°). cos(60°)