Доброго времени суток. , .
(→ -- значок вектора)
1. дан параллелограмм abcd . точка e - середина стороны ab.
o - произвольная точка пространства.
вектор co→–do→ = k· ae→.
чему равно число k?
2. дан параллелограмм abcd .
точки e и f являются соответственно серединами сторон cd и bc , o - произвольная точка пространства.
вектор do→ – bo→ = k· ef→
чему равно число k?
3. найти результирующий вектор
df→+2af→–0,5fd→+3fa→−1,5df→+ak→
по построению AH _|_ (a), BH _|_ (a), угол АНВ = 60°
-----------------------------------------------------------------------------
расстояние от точки Т до плоскости (грани двугранного угла) --это перпендикуляр из точки на плоскость
ТВ _|_ (альфа) ---> TB _|_ BH
аналогично, TA _|_ AH
TA=TB по условию
-----------------------------
TH --это будет расстояние от точки до прямой (тоже перпендикуляр)))
TH _|_ (a) по теореме о трех перпендикулярах
ТН=10 по условию
-----------------------------
точка, равноудаленная от сторон угла лежит на биссектрисе угла
угол ТНВ=30°
катет, лежащий против угла в 30 градусов равен половине гипотенузы)))
ТВ=ТА=5
Построим координатный параллелепипед точки А. Отметим на оси х — Ах(1;0;0); у — Ау(0;2;0); z — Аz (0;0;3).
Затем из точки Ах проведем две прямые, параллельную оси у и оси z, из точки Ау — прямые параллельные оси x и оси z; из Аz — параллельные оси х и оси у.
При пересечении прямых получаются точки Аху, Ауz, Ахz. Тогда
AxAxy = 2; AxAxz = 3; AyAxy = 1; AyAyz = 3; AzAxz = 1; AzAyz = 2;
Перпендикулярами на координатные оси будут отрезки ААz ААу; АAх на координатные плоскости αху, Ауz АХz. Получаем что основания перпендикуляров: Аху(1;2;0), Аyz(0;2;3), Аxz(1;0;3).ответ:
Объяснение: