Стержень - это цилиндр высотой Н и радиусом R. Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d: D=d=a√2=12√2. Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH. Объем прям.параллелепипеда Vп=a²H=144H. Объем проделанного отверстия радиусом r=6/2=3: Vо=πr²H=9πH. Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16) Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d:
D=d=a√2=12√2.
Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH.
Объем прям.параллелепипеда Vп=a²H=144H.
Объем проделанного отверстия радиусом r=6/2=3:
Vо=πr²H=9πH.
Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16)
Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
Дано:
ΔABC - равнобедренный
AB = BC BK⊥AC BK = 8 см R = 6,25 см
---------------------------------------------------------------
Найти:
AB - ?
1) Сначала найдем сторону OK:
OK = BK-BO = 8 см - R = 8 см - R = 8 см - 6,25 см = 1,75 см
2) Далее находим сторону оснований при теорема Пифагора и потом приравниваем их и находим сторону AB:
Из ΔAOK: AO² = AK² + OK² ⇒ AK² = AO² - OK²
Из ΔABK: AB² = BK² + AK² ⇒ AB² = BK² + AO² - OK²
AB² = BK² + AO² - OK² ⇒ AB = √BK² + AO² - OK²
BK = 8 см, AO = R = 6,25 см, OK = 1,75 см
AB = √(8 см)² + (6,25 см)² - (1,75 см)² = √64 см² + 39,0625 см² - 3,0625 см² = √21,875 см² ≈ 4,68 см
ответ: AB = 4,68 см