Точка равноудалена от сторон прямоугольного треугольника, => эта точка проектируется в центр вписанной в треугольник окружности. радиус вписанной в треугольник окружности: r=(a+b-c)/2 1. по теореме Пифагора: c²=a²+b². a=9 см, b=12 см c²=9²+12². c=15 см r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник: катет - расстояние от точки до плоскости треугольника, а=4 см катет - радиус вписанной в треугольник окружности, b=3 см гипотенуза - расстояние от точки до сторон треугольника, с. найти c²=3²+4² c=5 ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
радиус вписанной в треугольник окружности: r=(a+b-c)/2
1. по теореме Пифагора:
c²=a²+b². a=9 см, b=12 см
c²=9²+12². c=15 см
r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник:
катет - расстояние от точки до плоскости треугольника, а=4 см
катет - радиус вписанной в треугольник окружности, b=3 см
гипотенуза - расстояние от точки до сторон треугольника, с. найти
c²=3²+4²
c=5
ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).