Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника , то такие треугольники подобны, и их сходственные стороны пропорциональны. Пусть угол А=углу А1, угол С=углу С1=90 градусов ΔАВС подобен ΔА1В1С1по двум углам, тогда АВ/А1В1=k, AC/A1C1=k, BC/B1C1=k, AB=k*A1B1, AC=k*A1C1, BC=k*B1C1, sinA=BC/AB=k*B1C1/k*A1B1=B1C1/A1B1=sinA1, sinA1=B1C1/A1B1, cosA1=A1C1/A1B1, cosA=AC/AB=k*A1C1/k*A1B1=A1C1/A1B1=cosA1, tgA1=B1C1/A1C1, tgA=BC/AC=k*B1C1/k*A1C1=B1C1/A1B1=tgA1
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4 площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28
Задача 1.
S=kh
Соответственно k=S:h
60:12=5 - средняя линия трапеции
Задача 2.Площадь трапеции вычисляется по формуле a+b/2*h подставляем известные нам значения в формулу получаем 8*(8+b/2)=72
=128+b=144
b=16
Задача 3.
S=kh
Соответственно k=S:h
63:7=9 - средняя линия трапеции
Задача 4.
12*1+b/2=60
1+b=5
b=4
Задача 5
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 9-5=4
площадь равна высоте умноженной на полусумму оснований 4 * (9+5)/2 =28