Доказать, что формулы x=-(/2)x+(1/2)y, y=(-1/2)x-(/2)y записанные в прямоугольной декартовой системе координат, являются формулами движения. Определить его тип, найти элементы, определяющие это движение, и инвариантные направления.
По условию МК=КР, => ЕМ=ЕР(равные наклонные имеют равные проекции). ΔМЕР-равнобедренный. расстояние от точки Е до прямой МР-это перпендикуляр, проведенный из вершины равнобедренного треугольника к основанию является медианой(7 класс). (точку пересечения перпендикуляра и стороны МР обозначим буквой Д). рассмотрим ΔЕКД: 1. <ЕКД=90, т.к по условию ЕК перпендикулярна плоскости ΔМКР(прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости) 2. ЕК=8см 3. ЕД=2√41 4. по теореме Пифагора: ЕД^2=ЕК^2+КД^2, (2√41)^2=8^2+КД^2, 4*41=64+КД^2 КД^2=164-64, КД^2=100, рассмотрим ΔМДК: 1. <МДК=90 2. МД=1/2МР, МД=(1/2)*2√21, МД=√21 3. КД=10 4. по теореме Пифагора: МК^2=МД^2+КД^2, МК^2=21+100, ответ: МК=11
Осевое сечение данного конуса (если секущая плоскость проходит через ось конуса) - равнобедренный треугольник, а высота Н (или РО) делит этот треугольник на два прямоугольных треугольника.
=> △ВРА - равнобедренный
=> △ВРО и △АРО - прямоугольные.
Рассмотрим △ВРО:
∠РВА = 30°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> Н (или РО) = 12/2 = 6 см
Найдём радиус R (или ВО,ОА) по теореме Пифагора:
с² = а² + b²
b = √(c² - a²)
b = √(12² - 6²) = √(144 - 36) = √108 см
Итак, R (или ВО,ОА) = √108 см
Так как △ВРА - равнобедренный => △ВРО = △АРО (их равенство можно доказать по всем признакам равенства прямоугольных треугольников, исходя из того, что △ВРА - равнобедренный)
Площадь прямоугольного треугольника равна полупроизведению его катетов:
рассмотрим ΔЕКД:
1. <ЕКД=90, т.к по условию ЕК перпендикулярна плоскости ΔМКР(прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости)
2. ЕК=8см
3. ЕД=2√41
4. по теореме Пифагора: ЕД^2=ЕК^2+КД^2, (2√41)^2=8^2+КД^2, 4*41=64+КД^2
КД^2=164-64, КД^2=100,
рассмотрим ΔМДК:
1. <МДК=90
2. МД=1/2МР, МД=(1/2)*2√21, МД=√21
3. КД=10
4. по теореме Пифагора: МК^2=МД^2+КД^2, МК^2=21+100,
ответ: МК=11
конус.
l (или РА, ВР) = 12 см
∠РВА = 30°
Найти:S осевого сечения - ?
Решение:Осевое сечение данного конуса (если секущая плоскость проходит через ось конуса) - равнобедренный треугольник, а высота Н (или РО) делит этот треугольник на два прямоугольных треугольника.
=> △ВРА - равнобедренный
=> △ВРО и △АРО - прямоугольные.
Рассмотрим △ВРО:
∠РВА = 30°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> Н (или РО) = 12/2 = 6 см
Найдём радиус R (или ВО,ОА) по теореме Пифагора:
с² = а² + b²
b = √(c² - a²)
b = √(12² - 6²) = √(144 - 36) = √108 см
Итак, R (или ВО,ОА) = √108 см
Так как △ВРА - равнобедренный => △ВРО = △АРО (их равенство можно доказать по всем признакам равенства прямоугольных треугольников, исходя из того, что △ВРА - равнобедренный)
Площадь прямоугольного треугольника равна полупроизведению его катетов:
=> S△АРО = ((√108) * 6)/2 = 18√3 см²
В равных треугольниках равные площади.
=> S△АРО = S△ВРО = 18√3 см²
=> S△ВРА = 18√3 + 18√3 = 36√3 см²
ответ: 36√3 см²