В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
barmeb11
barmeb11
24.12.2022 02:47 •  Геометрия

Доказать что хорда перпендикулярная радиусу и проходящая через середину этого радиуса является стороной правильного треугольника

Показать ответ
Ответ:
aruzhanomash
aruzhanomash
31.07.2020 14:23
Пусть дана окружность с центром О и в нее вписан треугольник ABC. Соединим центр окружности О с вершинами A и B треугольника, а также опустим высоту ОE на сторону AB с центра окружности. Рассмотрим треугольник OEB, OE перпендикулярна AB, то есть угол OEB – прямой, OB=R (радиусу вписанной окружности) и OE=R/2 (по условию). Тогда по теореме Пифагора (EB)^2=(OB)^2-(OE)^2=R^2-R^2/4=3R^2/4 EB=R*sqrt(3)/2 Рассмотрим треугольник AEO. Он равен треугольнику OEB, поскольку AO=OB=R и OE- общая сторона. Тогда и AE=R*sqrt(3)/2, а значит AB=AE+EB= R*sqrt(3)/2+ R*sqrt(3)/2=R*sqrt(3) Поскольку в равносторонем треугольнике сторона равна R*sqrt(3), то и наше утверждение доказано
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота