В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
KaguraChan
KaguraChan
27.11.2021 22:37 •  Геометрия

Доказать что отношение эквипалентности на множестве отрезков является отношением эквивалентности

Показать ответ
Ответ:
Karamelka3467
Karamelka3467
18.04.2020 09:32
Пусть m1, m2, m3  – образы точки m при последовательных отражениях. три из четырёх проделанных преобразований (симметрии относительно прямой ab, прямой ac и точки a) не меняют расстояния до точки a. поскольку точка m осталась на месте, то и симметрия относительно bc не изменила расстояния до точки a. значит одна из точек mi  лежит на прямой bc. последовательные отражения относительно ac и ab есть поворот на 2  ∠  bac, а отражение относительно точки a  – поворот на 180    . значит, композиция всех этих преобразований является поворотом точки m на 2  ∠  bac  +  180    . так как m осталось неподвижна, то 2  α    +  180      делится на 2  π  . значит,   ∠  bac  =  90    .
0,0(0 оценок)
Ответ:
dolloc
dolloc
05.01.2021 00:02

ответ: рассматриваем равновесие точки с, которая считается несвободной, так как на нее наложены связи в виде стержней ас и вс. освобождаем точку с от связей и заменяем их силами реакций связей, считая, что стержень ас растягивается, а стержень вс сжимается под действием силы f. обозначим реакцию стержня ас через n1, а реакцию стержня вс через n2. в итоге точка с становится свободной, находясь под действием плоской системы трех сходящихся сил: активной силы f и сил реакций n1 и n2 (рис. 1, б). приняв точку о за начало координат, перенесем силы f, n1 и n2 параллельно самим себе в эту точку (рис. 1, в) и составляем уравнения проекций сил на оси координат:

или

                                              (1)

и

.                                             (2)  

умножим уравнение (1) на , получим

                                          (3)  

.                                                 (4)  

после сложения уравнений (3) и (4) получим

откуда 2n2 = f или   н. из уравнения (1) получаем, что

или   н.

графический метод. для решения этим методом выбираем масштаб силы f (например, 10 н = 1 мм) и строим замкнутый треугольник сил (рис. 1, г). из произвольной точки о проводим прямую, параллельную вектору f, и откладываем на этой прямой в выбранном масштабе вектор . из конца вектора   (точка а) проводим прямую, параллельную вектору , а из точки о — прямую, параллельную вектору . пересечение этих прямых дает точку в. получили замкнутый треугольник сил оав, стороны которого в выбранном масштабе изображают силы, сходящиеся в точке с. величины сил n1и n2 определим после измерения сторон ав и во треугольника оав.

объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота