В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
matematic14
matematic14
16.01.2023 13:56 •  Геометрия

Доказать что при пересечении двух параллельных прямых секущей соответственные углы равны

Показать ответ
Ответ:
Svetakim0934
Svetakim0934
06.07.2020 22:58
   Пусть прямые а и b параллельны, МК – секущая, А и С - точки пересечения между параллельными прямыми и секущей (см. рисунок приложения)   Расстояние между параллельными прямыми одинаково на всём их протяжении и  равно длине отрезка, проведенного между ними перпендикулярно. АВ и СД  – равные катеты получившихся прямоугольных треугольников АВС и АДС с общей гипотенузой АС.    Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. Из равенства ∆ АВС и ∆ АДС. следует равенство всех их сходственных элементов. ⇒ ∠ВСА=∠САД. Но ∠ВСА=∠ЕСМ как вертикальный, а угол ЕСМ - соответственный углу САД. ⇒ Соответственные углы при пересечении двух параллельных прямых третьей прямой – секущей – равны.
Доказать что при пересечении двух параллельных прямых секущей соответственные углы равны
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота