В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
miravolkova19
miravolkova19
24.01.2022 11:57 •  Геометрия

Доказать, что прямые e и d параллельны​


Доказать, что прямые e и d параллельны​

Показать ответ
Ответ:
elenafedorova
elenafedorova
02.06.2021 10:59

ответ:

объяснение:

построй произвольный четырёхугольник cdef, проведи прямую ce. на прямой ce отметь три точки: одна внутри четырехугольника, две вне его, слева ниже и справа выше. обзови точки g1, g2,g3. через эти три точки проведи три прямые, параллельные cd. проведи прямые cf,ed. у тебя получилось шесть точек пересечения прямых с плоскостью а: когда эта плоскость выше, ниже четырёхугольника и когда она пересекает его. а линии пересечения плоскостей (опять же для трёх случаев) ты уже провела: параллельные прямые через g1, g2, g3.

0,0(0 оценок)
Ответ:
RusskikhDaria
RusskikhDaria
13.08.2021 23:04

ответ:

якласс лого

1. теорема синусов, теорема косинусов

теория:

теорема синусов

теорему пифагора и тригонометрические функции острого угла можно использовать для вычисления элементов только в прямоугольном треугольнике.

для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.

4cepure.jpg

теорема синусов

стороны треугольника пропорциональны синусам противолежащих углов:

asina=bsinb=csinc

(в решении одновременно пишутся две части, они образуют пропорцию).

теорема синусов используется для вычисления:

неизвестных сторон треугольника, если даны два угла и одна сторона;

неизвестных углов треугольника, если даны две стороны и один прилежащий угол.

так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле sin(180°−α)=sinα .

наиболее часто используемые тупые углы:

sin120°=sin(180°−60°)=sin60°=3√2; sin150°=sin(180°−30°)=sin30°=12; sin135°=sin(180°−45°)=sin45°=2√2.

радиус описанной окружности

треуг2.jpg

asina=bsinb=csinc=2r , где r — радиус описанной окружности.

выразив радиус, получаем r=a2sina , или r=b2sinb , или r=c2sinc .

теорема косинусов

для вычисления элементов прямоугольного треугольника достаточно 2 данных величин (две стороны или сторона и угол).

для вычисления элементов произвольного треугольника необходимо хотя бы 3 данных величины.

4cepure.jpg

теорема косинусов

квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

a2=b2+c2−2⋅b⋅c⋅cosa .

также теорема исполняется для любой стороны треугольника:

b2=a2+c2−2⋅a⋅c⋅cosb ;

c2=a2+b2−2⋅a⋅b⋅cosc .

теорема косинусов используется для вычисления:

неизвестной стороны треугольника, если даны две стороны и угол между ними;

вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.

значение косинуса тупого угла находится по формуле cos(180°−α)=−cosα .

наиболее часто используемые тупые углы:

cos120°=cos(180°−60°)=−cos60°=−12; cos150°=cos(180°−30°)=−cos30°=−3√2; cos135°=cos(180°−45°)=−cos45°=−2√2.

если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.

вернуться в тему

следующее

copyright © 2019 якласс

контакты пользовательское соглашение

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота