В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Доказать что середины сторон равнобедренного треугольника являются вершинами другого равнобедренного треугольника.

Показать ответ
Ответ:
iamzayka
iamzayka
08.10.2020 22:24

Решение. Пусть треугольник ABC — равнобедренный с основанием ВС, а точки Ах, Вх,  Сх  — середины его сторон  (рис.88). Тогда АВ = AC, ZB = ZC, ВСХ = 1-АВ = 1-АС = СВХ, ВАХ = САХ.

Следовательно, АВАХСХ = АСАХВХ по двум сторонам и углу между ними. Отсюда следует, что АХСХ = АХВХ, т. е. треугольник АХВХСХ — равнобедренный, что и требовалось доказать.


Доказать что середины сторон равнобедренного треугольника являются вершинами другого равнобедренного
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота