В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
DDDDBB
DDDDBB
24.03.2020 06:26 •  Геометрия

Доказать, что среди любых 1001 разных натуральных чисел, меньше чем 2000, хотя бы одно равно сумме двух других. (скорее всего принцип дирихлэ) (случайно выбрал не тот предмет, это )

Показать ответ
Ответ:
itkrg
itkrg
09.10.2020 06:25

Объясню так, как я понял.

Если бы чисел было,например, 1000, то можно было бы выбирать их через одно: 1,3,5,7,9 и т.д. Что бы мы не сложили, никогда не будет выполнятся заданное условие. Если же чисел 1001, то даже если мы сделаем то же самое, что и в раз, мы дойдем  до 2000 и нам в любом случае нужно будет куда-то деть последнее число, за счет чего мы создадим комбинацию из трех последовательных чисел, например: 1,2,3, при которой выполняется заданное условие. То же самое и с двузначными и трехзначными числами, просто  сумма их будет где-то дальше в прогрессии.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота