В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
podzigunandrey3
podzigunandrey3
24.06.2021 10:04 •  Геометрия

Доказать,что сумма квадратов площадей диагональных сечений прямого параллелепипеда равна сумме квадратов площадей всех его граней.

Показать ответ
Ответ:
fefmweoiwefio
fefmweoiwefio
17.09.2020 12:53
Стороны прямого параллелепипеда a b с
три диагональные сечения имеют стороны
a; корень( b^2+c^2)
b; корень( c^2+a^2)
c; корень( a^2+b^2)
сумма квадратов площадей трех диагональных сечений
S1 =(a* корень( b^2+c^2))^2+(b* корень( c^2+a^2))^2+(c* корень(a^2+b^2))^2=a^2( b^2+c^2)+b^2*( c^2+a^2)+c^2*(a^2+b^2)=2a^2b^2+2a^2c^2+2b^2c^2

сумма квадратов площадей всех его граней
S2=(a*b)^2*2+(b*c)^2*2+(c*a)^2*2=2a^2b^2+2a^2c^2+2b^2c^2
S1 = S2 - доказано
0,0(0 оценок)
Ответ:
sotela546hgjUlia
sotela546hgjUlia
17.09.2020 12:53
Смотри во вложении ...
Доказать,что сумма квадратов площадей диагональных сечений прямого параллелепипеда равна сумме квадр
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота