Доказать , что сумма квадратов расстояний от любой то плоскости до двух противоположных вершин данного прямоугольника равна сумме квадратов расстояний от нее до двух других его чки вершин .
поскольку угол BDC образован основанием равнобедренного треугольника и медианой, проведенной к ней, то, следуя из этого мы можем сделать вывод, что угол BDC = 90 градусов (по свойствам равнобедренного треугольника)
угол BAD = 180 - уг1 = 180 - 115 = 65
угол BCA = угBAD = 65 градусов (как углы, прилежащие к основанию равнобедренного треугольника)
4.
рассмотрим треугольники DEK и FEK. в них DE = EF как стороны равнобедренного треугольника, прилежащие к основанию, угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла), а угEDK = угEFK как углы при основании равнобедренного треугольника, следовательно, треугольники DEK и FEK равны по двум углам и стороне между ними, что и требовалось доказать.
(не очень понял формулировку данной задачи, но если имелось ввиду доказать равность углов а не треугольников, то можете просто сказать что угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла))
Надо сразу отметить, что задача имеет решение, если трапеция является равнобедренной. В этом случае и её проекция будет так же равнобедренной трапецией. При проекции, упомянутой в задаче, искажаются (уменьшаются) размеры, ориентированные в одном направлении, а размеры, ориентированные в другом направлении, перпендикулярно искаженным, остаются без изменения. Тогда отношение площади проекции трапеции к площади самой трапеции будет равно косинусу угла между плоскостями трапеций (см. рис. 1). Таким образом, надо найти площадь проекции трапеции (см. рис. 2). Как известно площадь трапеции равна произведению средней линии трапеции на ее высоту. Среднюю линию, полагаю, Вы найдете сами, поскольку основания трапеции даны. Высоту то же, думаю, найти Вам не трудно по теореме Пифагора. Таким образом, Вы найдете, что площадь проекции трапеции равна 72 квадратных сантиметра. Отношение площади проекции трапеции к площади самой трапеции = 72/48√ 3 = 3/2√ 3 = √ 3/2. И искомый угол = arccos√ 3/2. Т. е. искомый угол равен углу, косинус которого равен корень квадратный из трех делёный на два. Постарайтесь сами найти этот угол. В комментариях можете сообщить окончательный результат, а я подскажу верно ли Вы решили.
3.
BAD = 65
BDC = 90
BCA =65
Объяснение:
3.
поскольку угол BDC образован основанием равнобедренного треугольника и медианой, проведенной к ней, то, следуя из этого мы можем сделать вывод, что угол BDC = 90 градусов (по свойствам равнобедренного треугольника)
угол BAD = 180 - уг1 = 180 - 115 = 65
угол BCA = угBAD = 65 градусов (как углы, прилежащие к основанию равнобедренного треугольника)
4.
рассмотрим треугольники DEK и FEK. в них DE = EF как стороны равнобедренного треугольника, прилежащие к основанию, угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла), а угEDK = угEFK как углы при основании равнобедренного треугольника, следовательно, треугольники DEK и FEK равны по двум углам и стороне между ними, что и требовалось доказать.
(не очень понял формулировку данной задачи, но если имелось ввиду доказать равность углов а не треугольников, то можете просто сказать что угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла))
Надо сразу отметить, что задача имеет решение, если трапеция является равнобедренной. В этом случае и её проекция будет так же равнобедренной трапецией. При проекции, упомянутой в задаче, искажаются (уменьшаются) размеры, ориентированные в одном направлении, а размеры, ориентированные в другом направлении, перпендикулярно искаженным, остаются без изменения. Тогда отношение площади проекции трапеции к площади самой трапеции будет равно косинусу угла между плоскостями трапеций (см. рис. 1). Таким образом, надо найти площадь проекции трапеции (см. рис. 2). Как известно площадь трапеции равна произведению средней линии трапеции на ее высоту. Среднюю линию, полагаю, Вы найдете сами, поскольку основания трапеции даны. Высоту то же, думаю, найти Вам не трудно по теореме Пифагора. Таким образом, Вы найдете, что площадь проекции трапеции равна 72 квадратных сантиметра. Отношение площади проекции трапеции к площади самой трапеции = 72/48√ 3 = 3/2√ 3 = √ 3/2. И искомый угол = arccos√ 3/2. Т. е. искомый угол равен углу, косинус которого равен корень квадратный из трех делёный на два. Постарайтесь сами найти этот угол. В комментариях можете сообщить окончательный результат, а я подскажу верно ли Вы решили.