Дві прямі на площині можуть мати спільну точку або не мати спільних точок. Дві прямі, які мають спільну точку, називаються прямими, що перетинаються.
Означення. Дві прямі, які лежать в одній площині і не перетинаються, називаються паралельними.
Паралельність прямих позначається знаком . Паралельність прямих а і b записується так: .
Аксіома паралельних прямих
Через точку, яка не лежить на даній прямій, можна провести в площині єдину пряму, паралельну даній прямій.
Нехай прямі а і b перетинаються третьою прямою с, яка називається січною. Тоді утворюється вісім кутів, які мають спеціальні назви: кути 3, 4, 5, 6 – внутрішні, кути 1, 2, 7, 8 – зовнішні.
Пари кутів 1 і 5, 2 і 6, 3 і 7, 4 і 8 називаються відповідними, пари кутів 3 і 6, 4 і 5 – внутрішніми різносторонніми, пари кутів 1 і 8, 2 і 7 – зовнішніми різносторонніми. Пари кутів 3 і 5, 4 і 6 називаються, 1 і 7, 2 і 8 – зовнішніми односторонніми.
Якщо дві паралельні прямі а і b перетнуті прямою с, то:
внутрішні різносторонні кути ріні, тобто ;
сума внутрішніх односторонніх кутів дорівнює 180°, тобто , ;
відповідні кути рівні, тобто ;
зовнішні різносторонні кути рівні, тобто ;
сума зовнішніх односторонніх кутів дорівнює 180°, тобто .
Дві прямі на площині можуть мати спільну точку або не мати спільних точок. Дві прямі, які мають спільну точку, називаються прямими, що перетинаються.
Означення. Дві прямі, які лежать в одній площині і не перетинаються, називаються паралельними.
Паралельність прямих позначається знаком . Паралельність прямих а і b записується так: .
Аксіома паралельних прямих
Через точку, яка не лежить на даній прямій, можна провести в площині єдину пряму, паралельну даній прямій.
Нехай прямі а і b перетинаються третьою прямою с, яка називається січною. Тоді утворюється вісім кутів, які мають спеціальні назви: кути 3, 4, 5, 6 – внутрішні, кути 1, 2, 7, 8 – зовнішні.
Пари кутів 1 і 5, 2 і 6, 3 і 7, 4 і 8 називаються відповідними, пари кутів 3 і 6, 4 і 5 – внутрішніми різносторонніми, пари кутів 1 і 8, 2 і 7 – зовнішніми різносторонніми. Пари кутів 3 і 5, 4 і 6 називаються, 1 і 7, 2 і 8 – зовнішніми односторонніми.
Якщо дві паралельні прямі а і b перетнуті прямою с, то:
внутрішні різносторонні кути ріні, тобто ;
сума внутрішніх односторонніх кутів дорівнює 180°, тобто , ;
відповідні кути рівні, тобто ;
зовнішні різносторонні кути рівні, тобто ;
сума зовнішніх односторонніх кутів дорівнює 180°, тобто .
* * * * * * * * * * * * * * * * * * * * * * * * * *
В равнобедренной трапеции диагональ является биссектрисой. Найдите площадь трапеции, если боковая сторона - 25 см, основание 39 см
ответ: 768 см².
Объяснение: Пусть ABCD равнобедренная трапеция
AD и BC основания трапеции ( AD || BC ) AD =39 см ,
ВA = CD =25 см и ∠ BAC = ∠ DAC .
S(ABCD) = h*(AD+BC)/2 -?
--------------------------------------
∠ BCA= ∠ DAC как накрест лежащие углы ( BC || AD , CA секущая) ,
следовательно ∠ BCA= ∠ DAC =∠ BAC , т.е. ΔBAC равнобедренный
BA = BC =25 см получили BA = CD =25 см .
Проведем BB₁ ⊥ AD и CC₁ ⊥ AD . BCC₁B₁ _прямоугольник BB₁ =CC₁
B₁C₁ = BC =25 см ; Δ BB₁A = Δ CC₁D(гипотен. BA= CD и катеты BB₁ =CC₁).
AB₁ =(AD - BC)/2 =(39 - 25)/2 см=7 см .
Из Δ BB₁A по теореме Пифагора:
BB₁ =√(BA² -AB₁² ) =√(25² -7)² =√(625 -49) =√576=24 (см) .
* * * h=√(25²-7)² =√(25 -7)(25 +7) =√(18*32) √(9*2*16*2)=3*2*4=24 * * *
S(ABCD) = h*(AD+BC)/2 =24(39+25)/2 =24*32 = 768 (см²).