В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
dimaburkovskiy3
dimaburkovskiy3
21.08.2022 10:55 •  Геометрия

Доказать! ) "докажите, что треугольник равнобедренный, если медианы проведенные к его боковым сторонам, равны."

Показать ответ
Ответ:
Mesnikfff
Mesnikfff
06.06.2020 23:26

А вот так если?

Раз равны две медианы, то равны и отрезки от вершин до точки пересечения медиан (ну это же 2/3 от длины). Поэтому треугольник, образванный частями равных медиан и стороной, соединяющей их (медиан) концы (или начала?  - ну, понятно, это та сторона, из концов которой выходят равные медианы :)), является равнобедренным. Это просто задано в условии. Но третья медиана треугольника (точнее, ее часть от точки пересечения медиан до стороны) является медианой и в этом треугольнике. То есть она перпендикулярна стороне. Поэтому вершина исходного треугольника лежит на перпендикуляре к стороне, проведеном через ее середину, то есть равноудалена от вершин - концов этой стороны. ЧТД.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота