Правильный прямоугольник - многоугольник с равными сторонами - это квадрат. Центром окружности, описанной около прямоугольника , является точка пересечения его диагоналей. Сами диагонали являются диаметрами описанной окружности, а их половинки - радиусами. Кроме того, Диагональ квадрата является гипотенузой прямоугольного треугольника, которая делится центром окружности пополам. Гипотенузу можно найти по теореме Пифагора : суммая квадратов катетов равна квадрату гипотенузы. Обозначим гипотенузу D. D*2= 10*2+10*2=200 D=√200, R= 10√2 / 2
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Центром окружности, описанной около прямоугольника ,
является точка пересечения его диагоналей.
Сами диагонали являются диаметрами описанной окружности, а их половинки - радиусами.
Кроме того, Диагональ квадрата является гипотенузой прямоугольного треугольника, которая делится центром окружности пополам.
Гипотенузу можно найти по теореме Пифагора : суммая квадратов катетов равна квадрату гипотенузы.
Обозначим гипотенузу D.
D*2= 10*2+10*2=200 D=√200, R= 10√2 / 2
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5