ΔАВС - равнобедренный ⇒ ∠А= ∠С - углы при основании равны АВ=ВС - боковые стороны равны АС - основание. По условию ∠А= 2∠В ⇒ ∠А =∠C > ∠В Напротив большего угла лежит большая сторона, а напротив большей стороны - больший угол ⇒ АВ=ВС = 16 см , АС = 4 см. Площадь треугольника можно найти по формуле Герона: S= √ (р *(р-а)(р-b)(р-с) ) р- полупериметр ; a,b,c - стороны треугольника ⇒ т.к. ΔАВС - равнобедренный ⇒ S= √ р *2(р-АВ)(р-АС) р= (АВ+ВС+АС)/2 = (16*2+4)/2 = 18 см S= √(18*2(18-16)(18-4) ) = √(18*2*2*14 ) = √1008 =√(144*7)= 12√7 см
800π см³
Объяснение:
Дано:
Цилиндр:
AB=12см
ОК=8см
<О1КО=45°
V=?
ОА=ОВ=R, радиусы.
∆АОВ- равнобедренный треугольник
ОК- высота, медиана и биссектрисса равнобедренного треугольника ∆АОВ
АК=АВ.
АК=АВ/2=12/2=6см
∆ОАК- прямоугольный треугольник
По теореме Пифагора
ОА=√(ОК²+АК²)=√(8²+6²)=√(64+36)=
=√100=10см. Радиус цилиндра.
Sосн=ОА²*π=10²π=100π см².
∆О1ОК- прямоугольный треугольник
<О1ОК=90°
<ОКО1=45°
<ОО1К=45°
∆О1ОК- равнобедренный треугольник, (углы при основании равны)
О1О=ОК=8см высота цилиндра.
V=Sосн*О1О=100π*8=800π см³
∠А= ∠С - углы при основании равны
АВ=ВС - боковые стороны равны
АС - основание.
По условию ∠А= 2∠В ⇒ ∠А =∠C > ∠В
Напротив большего угла лежит большая сторона, а напротив большей стороны - больший угол ⇒ АВ=ВС = 16 см , АС = 4 см.
Площадь треугольника можно найти по формуле Герона:
S= √ (р *(р-а)(р-b)(р-с) )
р- полупериметр ; a,b,c - стороны треугольника
⇒ т.к. ΔАВС - равнобедренный ⇒ S= √ р *2(р-АВ)(р-АС)
р= (АВ+ВС+АС)/2 = (16*2+4)/2 = 18 см
S= √(18*2(18-16)(18-4) ) = √(18*2*2*14 ) = √1008 =√(144*7)= 12√7 см
ответ: S = 12√7 см.