Треугольники АВС и АМР подобны, так как <В=<P, <C=<M (углы соответственные при параллельных прямых МР и ВС и секущих АВ и АС соответственно). Коэффициент подобия - это отношение соответственных сторон, или высот, или медиан, или периметров этих треугольников. Значит из подобия треугольников имеем: АО/АН = k - коэффициент подобия. Медианы треугольника делятся в точке пересечения в отношении 2:1 считая от вершины (свойство). Значит АО/ОН=2:1. Отсюда ОН=АО:2=24:2=12см. АН=АО+ОН=36см. Тогда АО/АН=24/36=2/3 = k (коэффициент подобия). Из подобия треугольников АВС и АМР: МР равна ВС*k = 32*(2/3)=21и1/3. ответ: MP=21и1/3.
Пусть M- cередина АС, N - середина АВ. Продолжим ВМ на расстояние ВМ, получим Q, продолжим CN на расстояние CN, получим Р. Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма). Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма). Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой
Значит из подобия треугольников имеем:
АО/АН = k - коэффициент подобия.
Медианы треугольника делятся в точке пересечения в отношении 2:1 считая от вершины (свойство). Значит АО/ОН=2:1. Отсюда ОН=АО:2=24:2=12см. АН=АО+ОН=36см.
Тогда АО/АН=24/36=2/3 = k (коэффициент подобия).
Из подобия треугольников АВС и АМР: МР равна ВС*k = 32*(2/3)=21и1/3.
ответ: MP=21и1/3.
Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма).
Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма).
Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой