В трапеции АВСД боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и Д и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой СД, если АД=4, ВС=3.Решение начинаем с рисунка. Продлим сторону СД до пересечения с прямой АВ в точке М. Из вершины С трапеции опустим высоту СН на основание АД. АН=ВС=3 НД=АД-3=1 Рассмотрим треугольники МВС и СНД ∠ВСМ=∠НДС как соответственные при пересечении параллельных прямых секущей. Следовательно, треугольники ВМС и СНД подобны по двум равным углам - прямому и острому. Из подобия треугольников следует ∠ ВМС=∠ НСД ВС:НД=3:1 МС:СД=3:1 МС=3 СД Обозначим величину СД =х Тогда МС=3х, а МД=4х МЕ - касательная к окружности. МД = секущая Квадрат касательной равен произведению секущей на её внешнюю часть. МЕ²=МД*МС МЕ²=4х*3х=12х² МЕ=2х√3 Расстояние от точки до прямой измеряется перпендикуляром. ЕТ ⊥ МД Из прямоугольного треугольника МКЕ выразим ЕТ ЕТ=МЕ*sin ВМС. ∠ВМС=∠ НСД ( из подобия треугольников) sin∠ВМС=sin∠НСД=НД:СД=1:х ⇒ ЕТ=2х√3*1/х=2√3
АС=15, О-середина АС, АО=ОС=1/2АС=15/2=7,5, АК=4, КД=8, АД=4+8=12, треугольник АОК=треугольникМОС по стороне (АО=ОС)и прилегающим двум углам (уголАОК=уголМОС как вертикальные, уголОАК=уголОСМ как внутренние разносторонние), АК=МС=4, ВМ=ВС(АД)-МС=12-4=8, ВМ=КД=8, СД=АВ=корень(АС вквадрате-АД в квадрате)=корень(225-144)=9, треугольник АВМ=треугольник КСД как прямоугольные по двум катетам, площадьАВСД=АВ*АД=9*12=108, площадьАВМ=площадьКСД=1/2*КД*СД=1/2*8*9=36, площадьАМСК=площадьАВСД-2*площадьКСД=108-2*36=36
Продлим сторону СД до пересечения с прямой АВ в точке М.
Из вершины С трапеции опустим высоту СН на основание АД. АН=ВС=3
НД=АД-3=1
Рассмотрим треугольники МВС и СНД
∠ВСМ=∠НДС как соответственные при пересечении параллельных прямых секущей.
Следовательно, треугольники ВМС и СНД подобны по двум равным углам - прямому и острому.
Из подобия треугольников следует ∠ ВМС=∠ НСД
ВС:НД=3:1
МС:СД=3:1
МС=3 СД
Обозначим величину СД =х
Тогда МС=3х, а МД=4х
МЕ - касательная к окружности. МД = секущая
Квадрат касательной равен произведению секущей на её внешнюю часть.
МЕ²=МД*МС
МЕ²=4х*3х=12х²
МЕ=2х√3
Расстояние от точки до прямой измеряется перпендикуляром.
ЕТ ⊥ МД
Из прямоугольного треугольника МКЕ выразим ЕТ
ЕТ=МЕ*sin ВМС.
∠ВМС=∠ НСД ( из подобия треугольников)
sin∠ВМС=sin∠НСД=НД:СД=1:х ⇒
ЕТ=2х√3*1/х=2√3