Данная фигура вращения представляет собой усеченный конус, из которого "вырезали" другой конус. Ясно, что площадь фигуры вращения составлена из: 1)боковой поверхности усеченного конуса с радиусом основания, равным 5 см - меньшей стороне данного треугольника - и образующей, противолежащей углу 60°.
2) площади основания - круга с радиусом 5 см- меньшей стороны треугольника
3) площади боковой поверхности "вырезанного" конуса с образующей СВ=8 см и радиусом основания, противолежащим углу, дополняющему данный угол до 90° Этот угол равен 90°-60°=30°, и радиус основания "вырезанного" конуса, как противолежащий этому углу, равен половине ВС=8:2=4 см
АС- образующая усеченного конуса. По т. косинусов АС²=ВС²+АВ²-2АВ*СВ*cos(60°) АС²=64+25-2*5*8*1/2АС²=89-40=49 АС=7 ------ 1) S бок усеч=πL(R+r) 2) S осн=πr² 3) S бок=πrL Вычисления даны во вложении. Но они очень простые, по приведенным формулам их можно сделать самостоятельно за минуту .--------- [email protected]
В прямоугольном треугольнике гипотенуза BC равна 20, катет AB равен 16. Найдите квадрат расстояния от вершины A до биссектрисы угла C.
Расстояние от точки до прямой измеряется перпендикуляром, проведенным от этой точки до прямой. Сделаем рисунок. Пусть биссектриса угла С будет СК. Биссектриса треугольника (любого) делит противоположную сторону в отношении длин прилежащих сторон. ⇒ АК:КВ=АС:ВС=12:20=3/5 ⇒АК=АВ:(3+5)*3 АК=6 Рассмотрим ⊿КАС КС - гипотенуза КС=√(АК²+АС²)=√180=6√5 АН можно найти из ⊿АНК. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом высотой АК²=КН*КС 36=КН*6√5 КН=36:6√5=6:√5 АН²=АК²-КН² АН²=36-(36:5)=144/5=28,8 ответ: квадрат расстояния от вершины A до биссектрисы угла C равен 28,8
Ясно, что площадь фигуры вращения составлена из:
1)боковой поверхности усеченного конуса с радиусом основания, равным 5 см - меньшей стороне данного треугольника - и образующей, противолежащей углу 60°.
2) площади основания - круга с радиусом 5 см- меньшей стороны треугольника
3) площади боковой поверхности "вырезанного" конуса с образующей СВ=8 см и радиусом основания, противолежащим углу, дополняющему данный угол до 90°
Этот угол равен 90°-60°=30°, и радиус основания "вырезанного" конуса, как противолежащий этому углу, равен половине ВС=8:2=4 см
АС- образующая усеченного конуса.
По т. косинусов
АС²=ВС²+АВ²-2АВ*СВ*cos(60°)
АС²=64+25-2*5*8*1/2АС²=89-40=49
АС=7
------
1) S бок усеч=πL(R+r)
2) S осн=πr²
3) S бок=πrL
Вычисления даны во вложении. Но они очень простые, по приведенным формулам их можно сделать самостоятельно за минуту
.---------
[email protected]
Расстояние от точки до прямой измеряется перпендикуляром, проведенным от этой точки до прямой.
Сделаем рисунок.
Пусть биссектриса угла С будет СК.
Биссектриса треугольника (любого) делит противоположную сторону в
отношении длин прилежащих сторон.
⇒ АК:КВ=АС:ВС=12:20=3/5
⇒АК=АВ:(3+5)*3
АК=6
Рассмотрим ⊿КАС
КС - гипотенуза
КС=√(АК²+АС²)=√180=6√5
АН можно найти из ⊿АНК.
Катет прямоугольного треугольника есть среднее пропорциональное
между гипотенузой и отрезком гипотенузы, заключенным между катетом высотой
АК²=КН*КС
36=КН*6√5
КН=36:6√5=6:√5
АН²=АК²-КН²
АН²=36-(36:5)=144/5=28,8
ответ: квадрат расстояния от вершины A до биссектрисы угла C равен 28,8