ответ:Номер 3
<1=7Х
<2=2Х
7Х+2Х=180 градусов,как односторонние
9Х=180
Х=180:9
Х=20
<1=20•7=140 градусов
<2=20•2=40 градусов
<3=<2=40 градусов,как накрест лежащие
Номер 4
<3 и противоположный ему-вертикальные и равны между собой
Этот вертикальный и угол 4 называются односторонними,и если прямые параллельны,то они в сумме равны 180 градусов
47+133=180 градусов
а|| b
Тут тоже самое
Угол 2 и противоположный ему угол называются вертикальными и равны между собой
Этот вертикальный и угол 1- односторонние
<1+<2=180 градусов,как односторонние
<1=(180-58):2=61 градус
<2=61+58=119 градусов
Номер 5
<МРN смежный
<МРТ=180-70=110 градусов
<МРК=<ТРК=110:2=55 градусов,
т к биссектриса делит <МРТ пополам
<ТРК=<МКР=55 градусов,как накрест лежащие при РТ || МК и секущей РК
Если при пересечении прямых секущей накрест лежащие углы равны,то прямые параллельны
<М=<К=70,как углы при основании равнобедренного треугольника или равнобедренной трапеции
<РКТ=70-55=15 градусов
Объяснение:
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
ответ:Номер 3
<1=7Х
<2=2Х
7Х+2Х=180 градусов,как односторонние
9Х=180
Х=180:9
Х=20
<1=20•7=140 градусов
<2=20•2=40 градусов
<3=<2=40 градусов,как накрест лежащие
Номер 4
<3 и противоположный ему-вертикальные и равны между собой
Этот вертикальный и угол 4 называются односторонними,и если прямые параллельны,то они в сумме равны 180 градусов
47+133=180 градусов
а|| b
Тут тоже самое
Угол 2 и противоположный ему угол называются вертикальными и равны между собой
Этот вертикальный и угол 1- односторонние
<1+<2=180 градусов,как односторонние
<1=(180-58):2=61 градус
<2=61+58=119 градусов
Номер 5
<МРN смежный
<МРТ=180-70=110 градусов
<МРК=<ТРК=110:2=55 градусов,
т к биссектриса делит <МРТ пополам
<ТРК=<МКР=55 градусов,как накрест лежащие при РТ || МК и секущей РК
Если при пересечении прямых секущей накрест лежащие углы равны,то прямые параллельны
<М=<К=70,как углы при основании равнобедренного треугольника или равнобедренной трапеции
<РКТ=70-55=15 градусов
Объяснение:
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.