В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
karinakarina9
karinakarina9
16.01.2023 11:57 •  Геометрия

Докажите что четырёхугольник ABCD с вершинами в точках A(1;-1),B(-4;4),С(-2;6) и D(3;1) является прямоугольником

Показать ответ
Ответ:
fox3221
fox3221
26.12.2023 09:08
Чтобы доказать, что четырёхугольник ABCD является прямоугольником, нам нужно проверить, удовлетворяют ли его стороны и диагонали условиям прямоугольника.

Первым шагом в доказательстве является вычисление длин сторон четырёхугольника ABCD. Для этого мы можем использовать формулу расстояния между двумя точками:

Длина AB = √((x₂ - x₁)² + (y₂ - y₁)²)
= √((-4 - 1)² + (4 - (-1))²)
= √((-5)² + (5)²)
= √(25 + 25)
= √50

Длина BC = √((x₂ - x₁)² + (y₂ - y₁)²)
= √((-2 - (-4))² + (6 - 4)²)
= √((2)² + (2)²)
= √(4 + 4)
= √8
= 2√2

Длина CD = √((x₂ - x₁)² + (y₂ - y₁)²)
= √((3 - (-2))² + (1 - 6)²)
= √((5)² + (-5)²)
= √(25 + 25)
= √50

Длина DA = √((x₂ - x₁)² + (y₂ - y₁)²)
= √((3 - 1)² + (1 - (-1))²)
= √((2)² + (2)²)
= √(4 + 4)
= √8
= 2√2

Теперь проверим, являются ли стороны четырёхугольника ABCD равными попарно:

AB = CD = √50
BC = DA = 2√2

Согласно условию прямоугольника, его стороны должны быть равными попарно. Так как стороны AB и CD равны между собой, а стороны BC и DA равны между собой, мы можем сделать предположение о том, что четырёхугольник ABCD может быть прямоугольником.

Чтобы окончательно подтвердить, что ABCD - прямоугольник, нам также нужно проверить, равны ли диагонали этого четырёхугольника. Для этого вычислим длины диагоналей:

Длина AC = √((x₂ - x₁)² + (y₂ - y₁)²)
= √((-2 - 1)² + (6 - (-1))²)
= √((-3)² + (7)²)
= √(9 + 49)
= √58

Длина BD = √((x₂ - x₁)² + (y₂ - y₁)²)
= √((-4 - 3)² + (4 - 1)²)
= √((-7)² + (3)²)
= √(49 + 9)
= √58

Теперь сравним длины диагоналей:

AC = BD = √58

Мы видим, что диагонали AC и BD равны между собой. Согласно определению прямоугольника, его диагонали также должны быть равными.

Таким образом, мы показали, что все стороны и диагонали четырёхугольника ABCD равны между собой. Поэтому мы можем сделать вывод, что четырёхугольник ABCD является прямоугольником.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота