В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Докажите что четырёхугольник abcd являяться паралелограмом,если a(0; 2: ; -3) b(-1; 1; 1) cc(2; -2; -1) d(3; -1; -5) ​

Показать ответ
Ответ:
nata3212
nata3212
25.02.2021 04:44

Сделаем рисунок и обозначим вершины пирамиды АВСА1В1С1. Ребро ВВ1⊥АВС=1 см

Площадь боковой поверхности этой пирамиды -  сумма площадей трех трапеций: двух прямоугольных и одной равнобедренной - той, что противолежит  ребру ВВ1. 

В основаниях пирамиды правильные треугольники - следовательно,   длины  средней линии всех трапеций равны 0,5•(3+5)=4 см

Площадь прямоугольных граней  равна произведению  их средней линии на  длину высоты пирамиды, т.е.  . 

S (АВВ1А1)=S (ВВ1С1С)= 4•1=4 см²

Чтобы найти  высоту грани АА1С1С,  проведем в основаниях пирамиды высоты  ВН и В1К  и соединим К и Н. 

Плоскость прямоугольной трапеции ВНКВ1 перпендикулярна плоскости оснований, т.к. содержит в себе отрезок ВВ1, перпендикулярный обоим основаниям.  

Из К опустим высоту КТ. 

КН по теореме о трех перпендикулярах перпендикулярна АС и является высотой трапеции АСС1А1. 

В прямоугольном треугольнике КТН катет КТ=ВВ1=1см, катет НТ равен разности высот оснований пирамиды. 

ВК=(3√3):2

BH=(5√3):2

ТН=2√3):2=√3 см

КН=√(КТ²+НТ²)=√4=2 см

S (АСС1А1)=4*2=8 см²

S(бок)=4+4+8=16 см²


Основаниями усечённой пирамиды являются правильные треугольники со сторонами 5 см и 3 см соответстве
0,0(0 оценок)
Ответ:
мяустик
мяустик
17.11.2020 05:16
Треугольники SCD и SAB - прямоугольные и центр описанной около них  окружности лежит в центре их общей гипотенузы SB.
Следовательно, центр шара , описанного вокруг пирамиды SABC лежит в этой  же точке и радиус его равен половине ребра SB. Ребро SB найдем по  Пифагору: SB=√(L²+b²).
Значит OA=OC=OB=OS=Rш=(1/2)√(L²+b²), а его объем равен Vш=(4/3)*πR³ или
Vш=(4/3)*(1/8)π(L²+b²)√(L²+b²)=(1/6)*(L²+b²)√(L²+b²).  (ответ).
Найдем объем пирамиды.
Опустим перпендикуляр SH из точки S на плоскость АВС. Основание этого  перпендикуляра Н попадет на прямую НВ в плоскости АВС вне треугольника  АВС. (То есть грань ASC не перпендикулярна плоскости основания).  Чтобы найти точку Н, надо в плоскости АВС провести перпендикуляры к  сторонам АВ и СВ в точки А и С. Их пересечение и даст нам искомую точку Н, в которую  проецируется вершина S пирамиды, так как по теореме, обратной теореме о  трех перпендикулярах, "прямая, проведенная в плоскости через основание  наклонной перпендикулярно к ней, перпендикулярна и к её проекции". Значит  SH - искомая высота. В равнобедренном треугольнике АВС отрезок ВР - высота,  биссектриса и медиана этого треугольника.
Тогда в прямоугольном треугольнике ВАН угол <ABH=(β/2), а гипотенуза  НВ=b/Cos(β/2). В прямоугольном треугольнике SHB по Пифагору катет SH=√ (SB²-HB²) или
SH=√[(√(L²+b²))²-(b/Cos(β/2))²]=√[(L²+b²)-(b²/Cos²(β/2)]
Объем пирамиды Vп=(1/3)*So*H. Или
Vп=(1/3)*b²Sinβ/2*√[(L²+b²)-(b²/Cos²(β/2)]. Или
Vп=(1/6)*b²Sinβ*√[(L²+b²)-(b²/Cos²(β/2)].  (ответ).

Проверим решение на конкретных числах.
Пусть b=4, L=3, β=60.
Тогда SB=√(L²+b²)=5.
PB=√(16+4)=√12=2√3.
AH=4√3/3,  SH=√(9-48/9)=√33/3. (первый вариант).
HP=2√3/3,  SP=√(L²-CP²)=√5.
SH=√(SP²-HP²)=√(5-12/9)= √33/3 (второй вариант).
HB=HP+PB=8√3/3.
SH=√(SB²-HB²)=√(25-199/9)=√33/3. (третий вариант).
Из моего решения:
SH=√[(L²+b²)-(b²/Cos²(β/2)]=√[(9+16)-(16*4/3]=√(11/3)=√33/3.

Восновании пирамиды sabc лежит равнобедренный треугольник abc: ав=вс=b, уголabc=бетта . рѐбра sa и s
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота