1. дан тр. ABC, BD медиана, тк треугольник равнобедренный, то BD делит его основание пополам. из этого AD=DC
2. тк треугольник равнобедренный, то медиана BD перпендикулярна к AC ( уг. ADB= уг BDC )
3. значит тр. ADC и BDC прямоугольные и равные ( BD общая, углы равны, AB=BC )
по теореме пифагора найдем AD тр ABD
AD^2= AB^2-BD^2
AD= корень кв. 13^2-12^2
AD=корень кв. 169-144
AD= корень кв. 25
AD=5
4. Значит AD=DC= 5 см AC=10см
5. Pтр= 13+13+ 10 =36 см
6. Sтр= 1/2 AC*BD
Sтр= 1/2* 10*12= 60 см
ответ: Sтр=60 , Pтр = 36
Диаметр шара 10 см, площадь сечения 9π см². Найти расстояние от центра шара до центра сечения.
О - центр шара, С - центр сечения, А - точка, лежащая на окружности сечения (и, значит, на поверхности шара).
Тогда ОА = 10/2 = 5 см - радиус шара.
Сечение шара - круг. Площадь сечения:
Sсеч = πr² = 9π
r² = 9
r = 3 см - радиус сечения.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен плоскости сечения, поэтому ΔАОС прямоугольный.
По теореме Пифагора:
ОС = √(АО² - AC²) = √(5² - 3²) = √16 = 4 см
1. дан тр. ABC, BD медиана, тк треугольник равнобедренный, то BD делит его основание пополам. из этого AD=DC
2. тк треугольник равнобедренный, то медиана BD перпендикулярна к AC ( уг. ADB= уг BDC )
3. значит тр. ADC и BDC прямоугольные и равные ( BD общая, углы равны, AB=BC )
по теореме пифагора найдем AD тр ABD
AD^2= AB^2-BD^2
AD= корень кв. 13^2-12^2
AD=корень кв. 169-144
AD= корень кв. 25
AD=5
4. Значит AD=DC= 5 см AC=10см
5. Pтр= 13+13+ 10 =36 см
6. Sтр= 1/2 AC*BD
Sтр= 1/2* 10*12= 60 см
ответ: Sтр=60 , Pтр = 36
Диаметр шара 10 см, площадь сечения 9π см². Найти расстояние от центра шара до центра сечения.
О - центр шара, С - центр сечения, А - точка, лежащая на окружности сечения (и, значит, на поверхности шара).
Тогда ОА = 10/2 = 5 см - радиус шара.
Сечение шара - круг. Площадь сечения:
Sсеч = πr² = 9π
r² = 9
r = 3 см - радиус сечения.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен плоскости сечения, поэтому ΔАОС прямоугольный.
По теореме Пифагора:
ОС = √(АО² - AC²) = √(5² - 3²) = √16 = 4 см