38.4)Треугольник основания ВДД1 - прямоугольный. ДД1 как ребро равно 6, ВД - диагональ, равна 6√2. Тогда площадь основания So=(1/2)*6*6√2 = 18√2. Высота H заданной пирамиды - это половина диагонали грани куба, равна: H = 6√2/2 = 3√2. Теперь находим объём: V = (1/3)*So*H = (1/3)*18√2*3√2 = 36. 38.5) Так как угол между высотой и апофемой равен 450, то треугольник РОН прямоугольный и равнобедренный, РО = НО = 4 см. Тогда РН2 = 2 * НО2 = 2 * 16 = 32. РН = 4 * √2 см. В основании пирамиды квадрат АВСД, тогда АО = СО = ВО = ДО, так как диагонали квадрата делятся в точке О пополам. АН = ВН, так как РН медиана треугольника АРВ, тогда ОН средняя линия треугольника АВС, тогда АВ = ВС = 2 * ОН = 2 * 4 = 8 см. Определим площадь основания. Sавсд = АВ2 = 82 = 64 см2. Определим площадь треугольника РАВ. Sарв = АВ * РН / 2 = 8 * 4 * √2 / 2 = 16 * √2 см2. Sбок = Sарв * 4 = 4 * 16 * √2 = 64 * √2 см2.
1)Поскольку ВС и AD - параллельны по свойству трапеции, (основания параллельны) то АС - секущая,
( красным - секущая; синим - основания)
Тогда по теореме накрест лежащих углов получаем следующее равенство:
{< - угол} <САD=<ACB=30°, поскольку накрест лежащие углы равны
2) Из пункта 1 и условия следует, что если рассмотреть
{∆ - треугольник} ∆АВС, то он равнобедренный, а значит <АСВ=<САВ=30°
Так как <А=<ВАС+<САD, то, он равен 60°
3) Поскольку из свойств равнобедренной трапеции следует, что углы при основании равны, поэтому
<D=60° как и <В=<С
4),Сумма односторонних углов равна 180° при секущей СD, и параллельных прямых ВС и AD из чего так же следует, что
<В=180°-60°=120°, => <С=120°
ответ: 120°, 120°, 60°, 60°
ДД1 как ребро равно 6, ВД - диагональ, равна 6√2.
Тогда площадь основания So=(1/2)*6*6√2 = 18√2.
Высота H заданной пирамиды - это половина диагонали грани куба, равна: H = 6√2/2 = 3√2.
Теперь находим объём:
V = (1/3)*So*H = (1/3)*18√2*3√2 = 36.
38.5) Так как угол между высотой и апофемой равен 450, то треугольник РОН прямоугольный и равнобедренный, РО = НО = 4 см. Тогда РН2 = 2 * НО2 = 2 * 16 = 32. РН = 4 * √2 см.
В основании пирамиды квадрат АВСД, тогда АО = СО = ВО = ДО, так как диагонали квадрата делятся в точке О пополам. АН = ВН, так как РН медиана треугольника АРВ, тогда ОН средняя линия треугольника АВС, тогда АВ = ВС = 2 * ОН = 2 * 4 = 8 см.
Определим площадь основания. Sавсд = АВ2 = 82 = 64 см2.
Определим площадь треугольника РАВ.
Sарв = АВ * РН / 2 = 8 * 4 * √2 / 2 = 16 * √2 см2.
Sбок = Sарв * 4 = 4 * 16 * √2 = 64 * √2 см2.