В условии сказано, что размер одной клетки 1 х 1, но при этом не сказано, чего (миллиметров, сантиметров, метров и т.д.). Поэтому и ответ надо дать в виде безразмерной величины.
ответ: 4.
№ 2.
Рассчитаем расстояния между точками.
Согласно теореме Пифагора:
АС = √(1² + 2²) = √5, где 1 и 2 - количество клеток по горизонтали и по вертикали.
АВ = √(2² + 1²) = √5, где 2 и 1 - количество клеток по горизонтали и по вертикали.
ВС = √(1² + 3²) = √10, где 1 и 3 - количество клеток по горизонтали и по вертикали.
Так как АС = АВ = √5, то треугольник АВС - равнобедренный.
А т.к. ВС² = АС² + АВ² = √((√5)² +(√5)²) = √10, то треугольник АВС - прямоугольный.
В равнобедренном треугольнике углы при основании равны.
По условию задачи CDEF - параллелограмм ⇒ EF║DC ⇒ ∠BEF = ∠BAC, а ∠DFE = ∠ DCA как соответственные при параллельных прямых EF║DC ⇒ ΔEBF подобен ΔАВС по первому признаку подобия.
Теперь мы можем выстроить пропорцию для нахождения BC.
BC/AC = BF / EF
BC/9 = 4/6
BC = 9*4/6 = 6
Теперь мы можем найти FC = ED = ВС - BF = 6-4 = 2
Периметр DEFC = 2 + 2 + 6 + 6 = 16 см
2. Сначала докажем, что ∠АВС и Δ NPB подобны.
По условию задачи NPMK - квадрат. ⇒ ∠ BNP = ∠BAC соответственные при NP║MK. ∠ В общий. ⇒ ∠АВС и Δ NPB подобны по первому признаку подобия.
Теперь используем то, что в подобных треугольниках отношение длин соответствующих элементов подобных треугольников (в частности высот ) равно коэффициенту подобия.
Выразим NP = PK = x, а высоту Δ NPB как 30 - х. Составим пропорцию:
См. Объяснение
Объяснение:
№ 1.
Считаем количество клеток до линии ВС - 4 клетки.
В условии сказано, что размер одной клетки 1 х 1, но при этом не сказано, чего (миллиметров, сантиметров, метров и т.д.). Поэтому и ответ надо дать в виде безразмерной величины.
ответ: 4.
№ 2.
Рассчитаем расстояния между точками.
Согласно теореме Пифагора:
АС = √(1² + 2²) = √5, где 1 и 2 - количество клеток по горизонтали и по вертикали.
АВ = √(2² + 1²) = √5, где 2 и 1 - количество клеток по горизонтали и по вертикали.
ВС = √(1² + 3²) = √10, где 1 и 3 - количество клеток по горизонтали и по вертикали.
Так как АС = АВ = √5, то треугольник АВС - равнобедренный.
А т.к. ВС² = АС² + АВ² = √((√5)² +(√5)²) = √10, то треугольник АВС - прямоугольный.
В равнобедренном треугольнике углы при основании равны.
Следовательно, угол АВС равен углу АСВ и равен:
∠АВС = (180°-90°) : 2 = 45°
ответ: ∠АВС = 45°
Объяснение:
1. Сначала докажем, что ΔEBF подобен ΔАВС.
По условию задачи CDEF - параллелограмм ⇒ EF║DC ⇒ ∠BEF = ∠BAC, а ∠DFE = ∠ DCA как соответственные при параллельных прямых EF║DC ⇒ ΔEBF подобен ΔАВС по первому признаку подобия.
Теперь мы можем выстроить пропорцию для нахождения BC.
BC/AC = BF / EF
BC/9 = 4/6
BC = 9*4/6 = 6
Теперь мы можем найти FC = ED = ВС - BF = 6-4 = 2
Периметр DEFC = 2 + 2 + 6 + 6 = 16 см
2. Сначала докажем, что ∠АВС и Δ NPB подобны.
По условию задачи NPMK - квадрат. ⇒ ∠ BNP = ∠BAC соответственные при NP║MK. ∠ В общий. ⇒ ∠АВС и Δ NPB подобны по первому признаку подобия.
Теперь используем то, что в подобных треугольниках отношение длин соответствующих элементов подобных треугольников (в частности высот ) равно коэффициенту подобия.
Выразим NP = PK = x, а высоту Δ NPB как 30 - х. Составим пропорцию:
70/х = 30 / 30-х, отсюда получаем:
2100 - 70х = 30х
2100 = 100х
х = 21