В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ValeriaAstahova99
ValeriaAstahova99
05.10.2021 14:26 •  Геометрия

Докажите, что если а> б> 0, то треугольник состоронами а в квадрате+б в квадрате, а в квадрате-б в квадрате и 2аб прямоугольный. определите длины катетов этого треугольника

Показать ответ
Ответ:
malyxd
malyxd
05.10.2020 02:13
Т.к. a > b, то a² - b² - катет и 2ab - тоже катет. Тогда a² + b² - гипотенуза:
(a² + b²)² = (2ab)²
a⁴ + 2a²b² + b⁴ = 4a²b²
a⁴ - 2a²b² + b⁴ = 0
(a² - b²)² = 0
a² = b²
a = b
Данное равенство невозможно по условию, отсюда следует, что a² + b² > 2ab
Для теоремы Пифагора будет справедливо тождество:
(a² + b²)² = (a² - b²)² + (2ab)²
a⁴ + 2a²b² + b⁴ = a⁴ - 2a²b² + b⁴ + 4a²b²
a⁴ + 2a²b² + b⁴ = a⁴ + 2a²b² + b⁴
0 = 0.
По обратной теореме Пифагора следует, что данный треугольник прямоугольный. Тогда сторона, равная a² - b² и сторона, равная 2ab - катеты.
ответ: a² - b², 2ab.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота