А подожди, кажется так: ΔАКС=ΔСМА по второму признаку равенства треугольников, так как АС- общая сторона, угол КСА=углу МАС (так как ΔАВС равнобедренный), угол КАС=углу МСА (так как АК и СМ биссектрисы).
Значит их высоты, проведённые из вершин М и К к стороне АС (обозначим их МН и КР) тоже равны.
В четырёхугольнике НМКР две стороны равны и параллельны, два угла прямые, значит НМКР- прямоугольник, значит КМ||АС
ΔАКС=ΔСМА по второму признаку равенства треугольников, так как АС- общая сторона, угол КСА=углу МАС (так как ΔАВС равнобедренный), угол КАС=углу МСА (так как АК и СМ биссектрисы).
Значит их высоты, проведённые из вершин М и К к стороне АС (обозначим их МН и КР) тоже равны.
В четырёхугольнике НМКР две стороны равны и параллельны, два угла прямые, значит НМКР- прямоугольник, значит КМ||АС